The work done by the force in pulling the block all the way to the top of the ramp is 3.486 kJ.
<h3>What is work done?</h3>
Work done is equal to product of force applied and distance moved.
Work = Force x Distance
Given is a block with a weight of 620 N is pulled up at a constant speed on a very smooth ramp by a constant force. The angle of the ramp with respect to the horizontal is θ = 23.5° and the length of the ramp is l = 14.1 m.
From the Newton's law of motion,
ma =F-mg sinθ =0
So, the force F = mg sinθ
Plug the values, we get
F = 620N x sin 23.5°
F = 247.224 N
Work done by motor is W= F x d
The force is equal to the weight F = mg
So, W = 247.224 x 14.1
W = 3.486 kJ
Thus, the work done by the force in pulling the block all the way to the top of the ramp is 3.486 kJ.
Learn more about Work done
brainly.com/question/13662169
#SPJ1
^
|
|
Books are always useful . Give me a "<em>thank</em><em> </em><em>you</em><em>"</em><em> </em>if i've been helpful
Answer:
712.5 kg m/s
Explanation:
Work out the total momentum before the event (before the collision):
p = m × v
Massof Deon = 95kg
Velocity =7.5m/s
Mass of Chuck = 120kg
Velocity = 0m/s
Momentum of Deon before = 95 × 7.5 = 712.5 kg m/s
Momentum of Chuck before = 120 × 0 = 0 kg m/s
Total momentum before = 712.5+ 0 = 712.5 kg m/s
Working out the total momentum after the event (after the collision):
Because momentum is conserved, total momentum afterwards = 712.5 kg m/s
Answer:
Zero
Explanation:
As we know that the force and the motion direction should always be perpendicular to each other due to which the work is done by static friction be zero
Therefore
F.dcos(theta) = F.d cos(90) = 0
Hence, the work done by static friction is zero
Therefore the same is to be considered