Answer: The answer is C.) 25 m/s^2.
Explanation: If you input 5 as s, you would have to use the exponent 2. This means that you have to multiply 5 by 5. 5 x 5= 25.
Edit: Also, because the surface is frictionless, it will make the object go faster too. Nothing can really slow it down unless something blocks it.
I believe all of these would be known as specific phobias.
Answer:
A. Close to 14 is considered a strong base
Explanation:
A substance with a pH close to 14 is considered a strong base
<em>PLEASE</em><em> </em><em>DO MARK</em><em> </em><em>ME AS</em><em> </em><em>BRAINLIEST</em><em> </em><em>IF</em><em> </em><em>MY</em><em> </em><em>ANSWER</em><em> </em><em>IS</em><em> </em><em>HELPFUL</em><em> </em><em>;</em><em>)</em><em> </em>
Work = (force) x (distance)
The worker does (40N) x (4m) = 160 joules of work.
Friction eats up (27N) x (4m) = 108 joules of that energy,
generating 108 joules of heat.
The remaining (160J - 108J) = 52 joules of energy moves the box.
Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m