The measure of angle D in the inscribed triangle is as follows;
∠D = 63 degrees
<h3>How to solve circle theorem?</h3>
The circle theorem can be use to find the ∠D as follows;
The triangle BCD is inscribed in the circle.
Using circle theorem,
The angle of each triangle is double the angle of the arc it create.
Therefore,
arc BC = m∠D
m∠B = 134 / 2 = 67 degrees.
Therefore, using sum of angles in a triangle.
67 + 50 + m∠D = 180
m∠D = 180 - 50 - 67
m∠D = 63 degrees.
learn more on circle theorem here: brainly.com/question/19906313
#SPJ1
The answer would be 42 degrees because the total of a triangle is 180 degrees. So you would subtract 180 and 42 (180-42) and that gives you 138 and since the two angles that are touching are the same
Parallel lines have the same slope.
To compare the slopes of two different lines, you have to get
both equations into the form of
y = 'm' x + (a number) .
In that form, the 'm' is the slope of the line.
Notice that it's the number next to the 'x' .
The equation given in the question is y = 3 - 2 x .
Right away, they've done something to confuse you.
You always expect the 'x' term to be right after the 'equals' sign,
but here, they put it at the end. The slope of this line is the -2 .
Go through the choices, one at a time.
Look for another one with a slope of -2 .
Remember, rearrange the equation to read ' y = everything else ',
and then the slope is the number next to the 'x'.
Choice #4: y = 4x - 2 . The slope is 4 . That's not it.
Choice #3: y = 3 - 4x . The slope is -4 . That's not it.
Choice #2). 2x + 4y = 1
Subtract 2x from each side: 4y = 1 - 2x
Divide each side by 4 : y = 1/4 - 1/2 x .
The slope is -1/2. That's not it.
Choice #1). 4x + 2y = 5
Subtract 4x from each side: 2y = 5 - 4x
Divide each side by 2 : y = 5/2 - 2 x .
The slope is -2 .
This one is it.
This one is parallel to y = 3 - 2x ,
because they have the same slope.
Answer:
a median
b center
Step-by-step explanation:
The middle value of a set of numbers is the median
The mean is the average value and the range is the largest minus the smallest.
This value is a measure of the center ( or a measure of the middle)
The range is a measure of the spread