2NaCN(s) + H₂SO₄(aq) --> Na₂SO₄(aq) + 2HCN(g)
The molar ratio between NaCN : HCN is 2:2 or 1:1
Mass of HCN = 16.7 g
Molar mass of HCN = 1 + 12 + 14 = 27 g/mol
Molar mass of NaCN = 49 g/mol
Therefore, the mass of NaCN is
16.7 g of HCN x 49 g/mol of NaCN / 27 g/mol of HCN = 30.3 grams of NaCN
Therefore, 30.3 grams of NaCN gives the lethal dose in the room.
Alkanes are saturated hydrocarbon that contains only single bonds, whereas Alkenes and Alkynes are unsaturated hydrocarbons which contain one or more double bond and triple bonds.
<u>Explanation:</u>
- A saturated hydrocarbon with an only single bond is called alkanes. Ethane consisting of two carbon atoms that are bonded with a single bond and six hydrogen atoms sharing the other valence electron of carbon atoms. The molecular structure of alkane is CnH2n+2.
- An unsaturated hydrocarbon with a two bond is called alkenes. Ethene consisting of two carbon atoms double-bonded to each other. The molecular structure of alkene is CnH2n.
- An unsaturated hydrocarbon with a triple bond is called as alkynes. It involves sharing three pairs of electrons. The molecular structure of alkyne is CnH2n-2.
Because they're not confident enough to confirm it's indeed true but they will support it for they believe it's correct.
1. Determine if the ionic substances can break apart into ions.
- e.g. CaCO3 isn't very soluble, do it can't dissolve and dissociate. If it can't pop apart, no ions.
2. Swap the partners for all the other ions that you can get from step 1. You can skip pairings with the same charge - a + can't get close to another + to react.
3. Use solubility, acid/base, and redox rules to see if anything will happen with the ions in solution.<span />