Answer:
4.43 g of Oxygen
Explanation:
As shown in Chemical Formula, one mole of Aluminium Sulfate [Al₂(SO₄)₃] contains;
2 Moles of Aluminium
3 Moles of Sulfur
12 Moles of Oxygen
Also, the Molar Mass of Aluminium Sulfate is 342.15 g/mol. It means,
342.15 g ( 1 mole) of Al₂(SO₄)₃ contains = 192 g (12 mole) of O
So,
7.9 g of Al₂(SO₄)₃ will contain = X g of O
Solving for X,
X = (7.9 g × 192 g) ÷ 342.15 g
X = 4.43 g of Oxygen
Resources found in lithosphere: gold and iron etc
Resources found in atmosphere: Water vapor, gases etc.
Answer:
Final temperature: 659.8ºC
Expansion work: 3*75=225 kJ
Internal energy change: 275 kJ
Explanation:
First, considering both initial and final states, write the energy balance:
Q is the only variable known. To determine the work, it is possible to consider the reversible process; the work done on a expansion reversible process may be calculated as:
The pressure is constant, so:
(There is a multiplication by 100 due to the conversion of bar to kPa)
So, the internal energy change may be calculated from the energy balance (don't forget to multiply by the mass):
On the other hand, due to the low pressure the ideal gas law may be appropriate. The ideal gas law is written for both states:
Subtracting the first from the second:

Isolating
:

Assuming that it is water steam, n=0.1666 kmol

ºC
Answer: Intensive physical property
Explanation: Color is an intensive physical property since intensive properties are properties that stay the same no matter the amount of the substance is present. Blood is still red whether or not you have 2 liters of it or 4 liters.
C6H14+9.5O2=6CO2 +7H20
Number of moles of C6H14=15.6/86=0.1814 moles
so moles of CO2 = 6(0.1814)=1.088
As the c6h14 has 1 is to 6 ratio with co2
so
0.1814=mass/44
mass of co2 produced = 47.9 g