Answer: The molar concentration of oxygen gas in water is
.
Explanation:
Partial pressure of the
gas = 685 torr = 0.8905 bar
1 torr = 0.0013 bar
According Henry's law:

Value of Henry's constant of oxygen gas at 20 °C in water = 34860 bar


Let the number of moles of
gas in 1 liter water be n.
1 Liter water = 1000 g of water
Moles of water in 1 L 




Molar concentration of oxygen gas in 1 L of water:

The molar concentration of oxygen gas in water is
.
Answer: A. The reaction takes place in one step.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction.
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.

k= rate constant
a= order with respect to A
b = order with respect to B
To much letters and numbers
Answer:
Yes. Example: <u>Sulfur hexafluoride (SF₆) molecule</u>
Explanation:
According to the octet rule, elements tend to form chemical bonds in order to have <u>8 electrons in their valence shell</u> and gain the stable s²p⁶ electronic configuration.
However, this rule is generally followed by main group elements only.
Exception: <u>SF₆ molecule</u>
In this molecule, six fluorine atoms are attached to the central sulfur atom by single covalent bonds.
<u>Each fluorine atom has 8 electrons in their valence shells</u>. Thus, it <u>follows the octet rule.</u>
Whereas, there are <u>12 electrons around the central sulfur atom</u> in the SF₆ molecule. Therefore, <u>sulfur does not follow the octet rule.</u>
<u>Therefore, the SF₆ molecule is known as a </u><u>hypervalent molecule</u><u> or expanded-valence molecule.</u>