THE CHARGE IS NEGATIVE BECAUSE THE NUMBER OF ELECTRON IS MORE THAN THE NUMBER OF PROTON
1.0153 x 10^3
essentially, scientific notation requires you to take a very large or very small number and simplify it into the first few digits times 10 raised to the power of x.
Although realistically, there is no practical reason to simplify a number that is already that close to 1.
The correct wave that matched its definition is:
- Transverse Wave - A wave that has a disturbance that is perpendicular to the wave motion. The wave motion is moving side to side, the energy will be moving up and down.
-
Longitudinal Wave - The disturbance is parallel to the wave motion. In a longitudinal wave, the energy, and the motion
A wave is known to be a disturbance that travels through a medium and transfers energy from one point to another without causing any permanent displacement of the medium itself.
We have two forms of wave namely the transverse waves and the longitudinal waves.
When the vibration of a medium is perpendicular to the wave direction, the kind of wave formed is known as a transverse wave.
When the vibration of a medium is parallel to the wave direction, the kind of wave formed is known as a longitudinal wave.
Learn more here: brainly.com/question/15923236
The question is missing a part, so the complete question is as follows:
The protein catalase catalyzes the reaction The Malcolm Bladrigde National Quality Awards aims to: 2H2O2 (aq) ⟶ 2H2O (l) + O2 (g) and has a Michaelis-Menten constant of KM = 25mM and a turnover number of 4.0 × 10 7 s -1. The total enzyme concentration is 0.012 μM and the intial substrate concentration is 5.14 μM. Catalase has a single active site. Calculate the value of Rmax (often written as Vmax) for this enzyme. Calculate the initial rate, R (often written as V0), of this reaction.
1) Calculate Rmax
The turnover number (Kcat) is a ratio of how many molecules of substrate can be converted into product per catalytic site of a given concentration of enzyme per unit of time:
Kcat =
,
where:
Vmax is maximum rate of reaction when all the enzyme sites are saturated with substrate
Et is total enzyme concentration or concentration of total enzyme catalytic sites.
Calculating:
Kcat = 
Vmax = Kcat · Et
Vmax = 4×
· 1.2 × 
Vmax = 4.8 ×
M
2) Calculate the initial rate of this reaction (R):
The Michaelis-Menten equation studies the dynamics of an enzymatic reaction. This model can explain how an enzyme enhances the rate of a reaction and how the reaction rate depends on the concentration of the enzyme and its substrate. The equation is:
V0 =
, where:
[S] is the substrate's concentration
KM is the Michaelis-Menten constant
Substituting [S] = 5.14 ×
, KM = 2.5 ×
and Vmax = 4.8 ×
, the result is V0 = 0.478 M.
The answers are Vmax = 4.8 ×
M and V0 = 0.478 M.