Answer:
NaCl + AgF → NaF + AgCl
Explanation:
A double replacement reaction is a type of chemical reaction that occurs when two reactants exchange cations or anions to yield two new products.
From all the reactions given ,
- 2Na + Cl₂ → 2NaCl is an example of combination reaction because two or more reactants (Na & Cl₂) react with each other to form a single product (NaCl)
- H₂SO₃ → H₂O + SO₂ is an example of decomposition reaction because a single reactant (H₂SO₃) breaks down into two or more products (H₂O & SO₂).
- 2K + 2H₂O → 2KOH + H₂ is an example of displacement reaction because a highly reactive element (K) displaces a least reactive element (H) from its compound (H₂O).
- NaCl + AgF → NaF + AgCl is an example of double replacement reaction because there's an exchange between Cations (
&
) and Anions (
&
).
Answer:
Kc for this equilibrium is 2.30*10⁻⁶
Explanation:
Equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction and the concentrations of reactants and products are held constant.
Being:
aA + bB ⇔ cC + dD
the equilibrium constant Kc is defined as:
![Kc=\frac{[C]^{c}*[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%2A%5BD%5D%5E%7Bd%7D%20%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
In other words, the constant Kc is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients by the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients. Kc is constant for a given temperature, that is to say that as the reaction temperature varies, its value varies.
In this case, being:
2 NH₃(g) ⇔ N₂(g) + 3 H₂(g)
the equilibrium constant Kc is:
![Kc=\frac{[N_{2} ]*[H_{2} ]^{3} }{[NH_{3} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BN_%7B2%7D%20%5D%2A%5BH_%7B2%7D%20%5D%5E%7B3%7D%20%20%7D%7B%5BNH_%7B3%7D%20%5D%5E%7B2%7D%20%7D)
Being:
- [N₂]= 0.0551 M
- [H₂]= 0.0183 M
- [NH₃]= 0.383 M
and replacing:

you get:
Kc= 2.30*10⁻⁶
<u><em>Kc for this equilibrium is 2.30*10⁻⁶</em></u>
Answer:
<h2>Pressure will increase</h2>
Explanation:
At a constant temperature, the pressure of gas will increase proportional to the decrease in volume of the gas.
P1V1= P2V2
Decrease in volume result in increase in pressure as the equation has to hold true.
PH of a solution will be <span>higher than 7
</span>
Ammonium cyanide is a salt formed by hydrogen cyanide and ammonia. Ammonia is a weak base and hydrogen cyanide is a weak acid.
NH₄CN + H₂O ⇒ NH₃ + HCN
NH₄⁺ + H₂O -----> H₃O⁺ + NH₃
CN⁻ + H₂O -----> HCN + OH⁻
Although both compounds are weak electrolytes, NH₃ is somewhat stronger base than HCN is a strong acid, so the solution reacts alkaline. We can prove this using Ka and Kb values:
Ka(HCN) = 4.9 x × 10⁻¹⁰
Kb(NH₃) = 1.8 × 10⁻⁵<span>
Kw= </span>1.0 × 10⁻¹⁴
Let's first calculate Ka for NH₄⁺:
Ka(NH₄⁺) x Kb(NH₃<span>) = pKw
</span>Ka(NH₄⁺) = Kw/Kb(NH₃) = 5.6 x 10⁻¹⁰
Then, Kb for CN⁻:
Kb(CN⁻) x Ka(HCN) = pKw
Kb(CN⁻) = Kw/Ka(HCN) = 2 x 10⁻⁵
From this, we can see that the acid constant NH4⁺ is much lower than the base constant of CN⁻, which will say that the solution of NH₄CN will react slightly alkaline because of the higher presence of hydroxyl ions in solution.