Answer:
(C5H7)8
Explanation:
It's empirical formula is given as; C5H7
Molar mass of carbon(C) = 12 g/mol
Molar mass of hydrogen(H) = 1 g/mol
We are told that it's molar mass is 536 g/mol.
To find the molecular formula;
Molecular formula = n × empirical formula
Thus;
n = 536/((12 × 5) + (1 × 7))
n = 8
Thus;
Molecular formula = (C5H7)8
Running water. Streams, lakes, rivers, ponds, oceans- all affect the Earth's landscape.
<u> </u> The pH of 0.035 M aqueous aspirin is 2.48
<u>Explanation:</u>
We are given:
Concentration of aspirin = 0.035 M
The chemical equation for the dissociation of aspirin (acetylsalicylic acid) follows:

<u>Initial:</u> 0.035
<u>At eqllm:</u> 0.035-x x x
The expression of
for above equation follows:
![K_a=\frac{[C_9H_7O_4^-][H^+]}{[HC_9H_7O_4]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_9H_7O_4%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHC_9H_7O_4%5D%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = -0.0037 because concentration cannot be negative
So, concentration of
= x = 0.0033 M
- To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
= 0.0033 M
Putting values in above equation, we get:

Hence, the pH of 0.035 M aqueous aspirin is 2.48
Answer:
One molecule
Explanation
But there is three different atoms forming this one NaOH. The three atoms are Na, O and H, that is one sodium, one oxygen, and one hydrogen.