1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
6

(-18 M squared N) squared Times 1/6 MN squared

Mathematics
1 answer:
Anuta_ua [19.1K]3 years ago
8 0

Answer:

                                                                                                       

                                                               

                                                 

             

Step-by-step explanation:

                                                                                                                                   

                                                                                                                                                   

You might be interested in
SISTEMA DE ECUACIONES
Zina [86]

4

Step-by-step explanation:

5 0
3 years ago
Identify the polygon that is the shape of the United States flag.
stellarik [79]

Answer:

d. quadrilateral

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Someone help plz!!!
rewona [7]
20 I think good luck
4 0
3 years ago
Use the discriminant, b2 - 4ac, to determine which equation has complex solutions.
ruslelena [56]

Using the discriminant, the quadratic equation that has complex solutions is given by:

x² + 2x + 5 = 0.

<h3>What is the discriminant of a quadratic equation and how does it influence the solutions?</h3>

A quadratic equation is modeled by:

y = ax² + bx + c

The discriminant is:

\Delta = b^2 - 4ac

The solutions are as follows:

  • If \mathbf{\Delta > 0}, it has 2 real solutions.
  • If \mathbf{\Delta = 0}, it has 1 real solutions.
  • If \mathbf{\Delta < 0}, it has 2 complex solutions.

In this problem, we want a negative discriminant, hence the equation is:

x² + 2x + 5 = 0.

As the coefficients are a = 1, b = 2, c = 5, hence:

\Delta = 2^2 - 4(1)(5) = 4 - 20 = -16

More can be learned about the discriminant of quadratic functions at brainly.com/question/19776811

#SPJ1

3 0
1 year ago
The midpoint of AB is at (3,7) and A is at (0,-5). Where is B located?
olga nikolaevna [1]
\bf \textit{middle point of 2 points }\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;&({{ \square }}\quad ,&{{ \square }})\quad &#10;%  (c,d)&#10;&({{ \square }}\quad ,&{{ \square }})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)\qquad thus&#10;\\&#10;----------------------------\\\bf \begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;A&({{ 0}}\quad ,&{{ -5}})\quad &#10;%  (c,d)&#10;B&({{ \square }}\quad ,&{{ \square }})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;(3,7)\impliedby midpoint\qquad thus&#10;\\ \quad \\&#10;\left(\cfrac{{{ x_2 }} + {{ 0}}}{2}=3\quad ,\quad \cfrac{{{ y_2 }} + {{( -5)}}}{2}=7 \right)\to &#10;\begin{cases}&#10;\cfrac{{{ x_2 }} + {{ 0}}}{2}=3&#10;\\ \quad \\&#10;\cfrac{{{ y_2 }} + {{ -5}}}{2}=7&#10;\end{cases}&#10;\\ \quad \\&#10;solve\ for\ x_2\ and\ y_2
3 0
3 years ago
Other questions:
  • Select from the drop down menus to correctly complete each statement
    14·2 answers
  • Factor 16x^2 + 49. Check your work.
    5·1 answer
  • Please help I will mark you as brainliest!
    10·2 answers
  • Line 1 passes through the points (-4, -6) and (12,2). line 2 passes through the points (-6,-2) and (-2,0). Do the lines intersec
    7·1 answer
  • The width of a rectangle is 12 units. Can the perimeter x of the rectangle can be 60 units when its length y is 18 units?
    14·2 answers
  • URGENT!!! DUE IN A FEW MINS!1!1 PLS HELP ASAP GUYS
    14·2 answers
  • Which of the following constructions is this?
    9·2 answers
  • I GIVEEEEE BRAINLILSET
    9·2 answers
  • Find the measure of each interior angle of a regular polygon with the following number of sides 10​
    12·1 answer
  • Tamara needs $624 for her budget every week. She works 40 hours a week.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!