Answer:
0.0905 M
Explanation:
Let's consider the neutralization reaction between H2SO4 and KOH.
H₂SO₄ + 2 KOH → K₂SO₄ + 2 H₂O
22.87 mL of 0.158 M KOH react. The reacting moles of KOH are:
0.02287 L × 0.158 mol/L = 3.61 × 10⁻³ mol
The molar ratio of H₂SO₄ to KOH is 1:2. The reacting moles of H₂SO₄ are 1/2 × 3.61 × 10⁻³ mol = 1.81 × 10⁻³ mol
1.81 × 10⁻³ moles of H₂SO₄ are in 20.0 mL. The molarity of H₂SO₄ is:
M = 1.81 × 10⁻³ mol / 0.0200 L = 0.0905 M
In the context of multivalent ions, it is when it has multiple oxidative states.
Answer:
525.1 g of BaSO₄ are produced.
Explanation:
The reaction of precipitation is:
Na₂SO₄ (aq) + BaCl₂ (aq) → BaSO₄ (s) ↓ + 2NaCl (aq)
Ratio is 1:1. So 1 mol of sodium sulfate can make precipitate 1 mol of barium sulfate.
The excersise determines that the excess is the BaCl₂.
After the reaction goes complete and, at 100 % yield reaction, 2.25 moles of BaSO₄ are produced.
We convert the moles to mass: 2.25 mol . 233.38 g/mol = 525.1 g
The precipitation's equilibrium is:
SO₄⁻² (aq) + Ba²⁺ (aq) ⇄ BaSO₄ (s) ↓ Kps
<span>d. filters out harmful ultraviolet radiation</span>
Answer:
It is difficult, if not impossible, to heat a solid above its melting point because the heat that ... in a solid are packed in a regular structure that is characteristic of that particular substance.
<h3>#carryONlearning </h3>