Answer:
6.32
Step-by-step explanation:
6^2 - 2^2
✓40
=6.32455532
2d.p = 6.32
Base Surface Area = π×42
= 50.265482457437 inches2
Lateral Surface Area = π×4×√42 + 4.72440944881892
= 77.789838023204 inches2
Total Surface Area = 128.05532048064 inches2
Or in square centimeters:
Base Surface Area = π×10.162
= 324.2927866224 centimeters2
Lateral Surface Area = π×10.16×√10.162 + 122
= 501.8689189905 centimeters2
Total Surface Area = 826.1617056129 centimeters2
Answer:
The bearing of A from B is 296 degrees
Step-by-step explanation:
Here, we want to find the bearing of point A from point B
To find the bearing of point A from B, we simply subtract the bearing of B from A from 360
Mathematically, that will be;
360 - 64 = 296 degrees
Answer:
I think the answer is B, because the value does increase by one
First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx