Answer:
For every 4 moles of NO created, 6 moles of H2O are created so the ratio is 4:6
Explanation:
You just need to balance the equation.
NH3 + O2 -> NO + H2O
1. I started with hydrogen; there's 3 on the left and 2 on the right. Multiply them together to find a number they both go into (3×2=6, but in this case 6 hydrogen on each side does not work so I doubled it so there is 12 hydrogen on each side).
This will bring you to this:
4NH3 + O2 -> NO + 6H2O
2. Now get equal amounts of nitrogen on each side. There's 4 nitrogen on the left side, and 1 on the right. Multiply the right by 4. Then you will have this:
4NH3 + O2 -> 4NO + 6H2O
3. Last thing you need to do is have the same amount of oxygen on both sides. On the left you have 2 and on the right you have 10. Get the left to 10 by multiplying it by 5.
Balanced: 4NH3 + 5O2 -> 4NO + 6H2O
In word form, for every reaction between 4 moles of ammonia and 5 moles of oxygen, 4 moles of nitric oxide and 6 moles of water will be created.
I hope this helps!
Answer: Artificial transmutation may occur in machinery that has enough energy to cause changes in the nuclear structure of the elements. This releases, on average, 3 neutrons and a large amount of energy. The released neutrons then cause fission of other uranium atoms, until all of the available uranium is exhausted.
Hope this helped!!
Could I get brainliest by chance?!
<h3><u>Answer</u>;</h3>
≈ 4.95 g/L
<h3><u>Explanation;</u></h3>
The molar mass of KCl = 74.5 g/mole
Therefore; 0.140 moles will be equivalent to ;
= 0.140 moles × 74.5 g/mole
= 10.43 g
Concentration in g/L
= mass in g/volume in L
= 10.43/2.1
= 4.9667
<h3> <u> ≈ 4.95 g/L</u></h3>
The reason why the reaction written on the picture can be classified as a synthesis reaction is :
the reaction shows one compound that formed from two compounds
hope this helps
Answer:
B) conducts electricity
Explanation:
Metals are conductors, literally meaning they conduct electricity.
One metal is liquid at room temp (there might be one more but I only know of mercury).
The reactivity depends on the placement in the periodic table.
If it conducts electricity, it can't be an insulator.