volume of Ni = 25 nL = 25 x 10⁻⁹ L
mol Ni = 25 x 10⁻⁹ L x 1.25 mol/L = 3.125 x 10⁻⁸
mass = mol x Ar Ni
mass = 3.125 x 10⁻⁸ x 59 g/mol
mass = 1.84 x 10⁻⁶ g = 1.84 μg
Leading up to this, calcium gave up 2 valence electrons and thus was denoted as a cation. These 2 electrons were transferred to bromine, which received an overall negative charge because of the addition of 2 valence electrons in its valence shell, and thus formed a negatively charged ion, an anion.
Both formed an ionic bond, due to the electrostatic charge of attraction between the 2 oppositely charged ions. If many ions of Ca and Br are present and numerous ionic bonds have formed it will undergo an arrangement which is that of an ionic lattice, type of structure.
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.
Answer:
16.8 g of AgCl are produced
Explanation:
The reactants are: NaCl and AgNO₃
The products are: AgCl, NaNO₃
Balanced equation: NaCl(aq) + AgNO₃(aq) → NaNO₃(aq) + AgCl(s) ↓
We convert the mass of AgNO₃ to moles → 10 g / 85g/mol = 0.117 moles
Ratio is 1:1, therefore 0.117 moles of nitrate will produce 0.117 moles of AgCl.
According to stoichiormetry.
We convert the moles to mass → 0.117 mol . 143.3g /1mol = 16.8 g