Bc the time changes that is the answer hoped i helped
Answer:
0.4 km/h velocity is also the direction their going, in this case the person, that I'll name billy bob joe, is going in so yeh
Explanation:
give me brainliest?
Answer:
- Nitrogen has four pairs of electrons: 3 bonds and 1 lone pair in the valence shell;
- Electrons repel one another based on the VSEPR theory;
- Nitrogen has a total of 7 protons (its atomic number is 7) in its nucleus.
Explanation:
The shape and the bond orientation of molecules and ions are both explained by the valences shell electron pair repulsion theory (VSEPR).
Ammonia,
, is a molecule which contains three N-H bonds, as well as one lone pair on nitrogen. According to the VSEPR theory, molecules try to acquire a shape which would minimize the repulsion exhibited by the electron clouds present, that is, between the bonding (shared in a bond) and non-bonding (lone pair) electrons.
In VSEPR, our main step is to calculate the steric number, this is the sum of the number of bonds (ignoring the multiplicity of any bond) and the lone pairs on a central atom. In ammonia, we have 3 bonds and 1 lone pair, totaling to a steric number of 4. A steric number of 4 without any lone pairs on a central atom and just bonds would yield a tetrahedral shape with bond angles of
.
Now, in this case, since we have a lone pair instead of a bond, it is repelling stronger decreasing the bond angles to about
.
The greater the number of lone pairs, the lower the angle becomes.
To summarize:
- Nitrogen has four pairs of electrons: 3 bonds and 1 lone pair in the valence shell;
- Electrons repel one another based on the VSEPR theory;
- Nitrogen has a total of 7 protons (its atomic number is 7) in its nucleus.
Answer:
For every pound lost, replace it with 16 to 20 ounces of fluid
Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL