Answer is: energy is absorbed.
According to the Bohr model of the atom:
1. Electrons orbit the nucleus in orbits that have a set size and energy.
2. Energy levels of electrons are discrete (certain discrete values of energy).
3. Electrons can jump from one energy level to another, absorbing or emitting electromagnetic radiation with a frequency ν (energy difference of the levels).
Did you know conventional argult culture has increased greenhouse gas emissions, soil erosion, water pollution, and threatened humans health. Let’s stop this from harming our environment and take action about this today. Organic farming has a smaller carbon footprint, conserves and builds soil, replenishes natural ecosystems for cleaner water and air, all with a toxic pesticide residues.
The answer is: True.
The magnitude of a vector is represented by the length of the arrow.
The arrow length is drawn according a chosen scale.
For example, the diagram shows a vector with a magnitude of 100 kilometers, if the scale used for constructing the diagram is 1 cm = 10 km, the vector arrow is drawn with a length of 10 cm.
The arrow has an obvious tail and arrowhead. The arrow points in the precise direction.
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)