Rate law for the given 2nd order reaction is:
Rate = k[a]2
Given data:
rate constant k = 0.150 m-1s-1
initial concentration, [a] = 0.250 M
reaction time, t = 5.00 min = 5.00 min * 60 s/s = 300 s
To determine:
Concentration at time t = 300 s i.e. ![[a]_{t}](https://tex.z-dn.net/?f=%5Ba%5D_%7Bt%7D)
Calculations:
The second order rate equation is:
![1/[a]_{t} = kt +1/[a]](https://tex.z-dn.net/?f=1%2F%5Ba%5D_%7Bt%7D%20%3D%20kt%20%2B1%2F%5Ba%5D)
substituting for k,t and [a] we get:
1/[a]t = 0.150 M-1s-1 * 300 s + 1/[0.250]M
1/[a]t = 49 M-1
[a]t = 1/49 M-1 = 0.0204 M
Hence the concentration of 'a' after t = 5min is 0.020 M
Answer:
wave
Explanation:
'Wave' is a common term for a number of different ways in which energy is transferred: In electromagnetic waves, energy is transferred through vibrations of electric and magnetic fields.
i hope this helps and your welcom
Based upon Max Planck's theory of black-body radiation, Einstein theorized that the energy in each quantum of light was equal to the frequency multiplied by a constant, later called Planck's constant. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect.
m = mass of the truck traveling = 2500 kg
v = speed of the truck traveling = 75 km/h = 75 (km/h) (1000 m/ 1 km) (1 h /3600 sec) = 20.83 m/s
h = plank's constant = 6.63 x 10⁻³⁴
λ = wavelength of truck = ?
according to de broglie's principle, wavelength of truck is given as
λ = h/(mv)
inserting the values in the above equation
λ = (6.63 x 10⁻³⁴)/((2500) (20.83))
λ = 1.3 x 10⁻³⁸ m