1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
3 years ago
5

The polynomial given below has _____ root(s).

Mathematics
1 answer:
lisov135 [29]3 years ago
8 0
3x²-8x+4=0
(3x-2) (x-2)=0
x=2/3 ,  x = 2
Hence, the polynomial has two positive roots.
Option A is the correct choice.
You might be interested in
Factorise the expressions and divide them as directed.​
Annette [7]

a) 3(x-9)= 3x -9

3x-27=3x -9

3x-3x=-9+27

x=18

b) 2x+3x=5x^2

2x+3x=( 5x)^2

2x+3x=25x

5x=25x

x=25x/5

x=5x

6 0
3 years ago
What is the value of the expression –7 – 5 + 4?
vichka [17]
By solving this problem, I got D.-8.Right?
6 0
4 years ago
Terry earned x dollars selling electronics last month. this month he earned $18 less than twice the amount he earned last month.
ValentinkaMS [17]

Answer:

2x - 18

$3,382

Step-by-step explanation:

x = number of dollars gained last month

this month:

twice the amount = 2x

minus $18 = 2x - 18

x = 1,700

2x - 18

2(1700) - 18

3,400 - 18

$3,382

6 0
3 years ago
Read 2 more answers
Solve the matrix and prove that it is equal 0​
Art [367]

Step-by-step explanation:

\underline{ \underline{ \text{Given}}}  :

  • \tt{ {A}^{T}  = \begin{bmatrix} 2 &  - 4 \\ 4 & 3 \\ \end{bmatrix}}

\underline{ \underline { \text{To \: Find}}} :

  • \sf{ {A}^{2}  - 5A+ 22I= 0}

\underline{ \underline{ \text{Solution}}} :

The new matrix obtained from a given matrix by interchanging it's rows and columns is called the transposition of matrix. It is denoted by \sf{ {A}^{T}}. Again , Interchange it's rows and columns in order to find ' A '.

\tt{A = \begin{bmatrix} 2 &  4 \\  - 4 & 3 \\ \end{bmatrix}}

Now , LEFT HAND SIDE ( L.H.S )

\tt{ {A}^{2}  - 5A+ 22I}

Here, I refers to identity matrix. A diagonal matrix in which all the elements of leading diagonal are 1 ( unit ) is called unit or identity matrix.

⟼ \begin{bmatrix} 2 &   4 \\  - 4 & 3 \\ \end{bmatrix} \times \begin{bmatrix} 2 &  4 \\ -  4 & 3 \\ \end{bmatrix} - 5 \times \begin{bmatrix} 2 &   4 \\  - 4 & 3 \\ \end{bmatrix} + 22 \times \begin{bmatrix} 1 &   0 \\  0 & 1\\ \end{bmatrix}

⟼ \begin{bmatrix} 2  \times 2 + 4 \times ( - 4)&   2  \times 4 + 4 \times 3 \\  - 4 \times 2 + 3 \times ( - 4) &  - 4  \times 4 + 3 \times 3 \\ \end{bmatrix} - \begin{bmatrix} 10 &   20 \\   - 20& 15 \\ \end{bmatrix} + \begin{bmatrix} 22 &   0 \\  0 & 22 \\ \end{bmatrix}

⟼ \begin{bmatrix} 4 + ( - 16) &   8 + 12 \\   - 8 + ( - 12) &  - 16 + 9 \\ \end{bmatrix} - \begin{bmatrix} 10 &   20 \\   - 20 & 15 \\ \end{bmatrix} + \begin{bmatrix} 22 &   0 \\  0 & 22 \\ \end{bmatrix}

⟼ \begin{bmatrix} - 12 &   20\\  - 20&  - 7 \\ \end{bmatrix} - \begin{bmatrix} 10 &   20 \\   - 20 & 15 \\ \end{bmatrix} + \begin{bmatrix} 22 &   0 \\  0 & 22 \\ \end{bmatrix}

⟼ \begin{bmatrix}  - 22 &   0 \\  0&  - 22 \\ \end{bmatrix}  + \begin{bmatrix} 22 &   0 \\  0 & 22 \\ \end{bmatrix}

⟼ \begin{bmatrix}  - 22 + 22 &   0 + 0 \\  0 + 0 &  - 22  + 22 \\ \end{bmatrix}

⟼ \begin{bmatrix} 0 &   0\\  0 & 0 \\ \end{bmatrix}

⟼ \sf{0}

RIGHT HAND SIDE ( R.H.S ) : 0

L.H.S = R.H.S [ Hence , proved ! ]

Hope I helped ! ♡

Have a wonderful day / night ! ツ

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

4 0
3 years ago
Use the given information to find the exact value of the expression. sin α = 2129 21 29 , α lies in quadrant II, and cos β = 151
beks73 [17]
The correct question is
Use the given information to find the exact value of the expression. sin α = 21/29, α lies in quadrant II, and cos β = 15/17, β lies in quadrant I Find sin (α - β).

we know that
sin(α − β<span>) = </span>sin α cos β − cos α sin β

α lies in quadrant II
so
cos α  is negative
sin α  is positive

β lies in quadrant I
so
cos β  is positive
sin β   is positive

step 1
find sin β
cos β=15/17
sin² β+cos² β=1-----------> sin² β=1-cos² β----> sin² β=1-(15/17)²
sin² β=1-225/289-----> 64/289
sin β=8/17

step 2
find cos α
sin α = 21/29
cos² α + sin² α=1----> cos² α=1-sin² α---> cos² α=1-(21/29)²---> 1-441/841
cos² α=400/841------> cos α=-20/29  (remember cos α is negative)

step 3
find sin(α − β) 
sin α = 21/29   cos α=-20/29
sin β=8/17       cos β=15/17

sin(α − β) = [21/29]*[15/17] − [-20/29*]*[8/17]
sin(α − β) = [315/493] − [-160/493]
sin(α − β) = 475/493

the answer is
sin(α − β) = 475/493


3 0
4 years ago
Other questions:
  • 12
    9·1 answer
  • How would you solve for side a? Pythagorean theorem, cause if that's the case wouldn't
    12·1 answer
  • I need help pronto {(2,2,),(-5,2),(6,6),(9,4),(4,9)} is it a function and explain please
    7·1 answer
  • If m /_1=37 degrees, what is m/_4?
    5·1 answer
  • How do you solve 15.00 - 6.24​
    15·2 answers
  • The price of a stock decreased by 60 cents one week, decreased 10 cents the next week, and decreased another 20 cents the follow
    9·1 answer
  • Will MARK BRAINLIEST!!! Jason invests $8,264 in an account that earns an annual interest rate of 4%. What will be the balance of
    5·1 answer
  • The diameter is 24 cm. Find the<br> length of arc CD
    12·1 answer
  • Write the fraction in simplest form. 2/16 *​
    12·1 answer
  • Can someone help me with this math question and can you explain it to? If so that would be great :)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!