1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
3 years ago
9

Complete the steps to find all zeroes of the function f(x) = x4 − 4x3 − 4x2 + 36x − 45. This function has roots.

Mathematics
2 answers:
xxTIMURxx [149]3 years ago
7 0
Steps?

A graph shows zeros to be ±3. Factoring those out leaves the quadratic
  (x-2)² +1
which has complex roots 2±i.

The function has roots -3, 3, 2-i, 2+i.

lapo4ka [179]3 years ago
5 0

this function has 4 roots.

You might be interested in
Pls help with the matching
Ronch [10]
12-y=9
3x-y=21
4y-10=2
1/4xy=6
6 0
3 years ago
Read 2 more answers
Choose the system of equations which matches the following graph:
aleksandr82 [10.1K]
The coordinates give are
(0,6)
(4,9)

(3,6)
(2,3)

These points can be substituted into the systems of equation in the choices and inspect which equations satisfy the value of the points. Doing this, the answer is
3x - 4y = -24
3x - y = 3
4 0
3 years ago
Jed needs a piece of wood that is exactly 9.185 ft long for his project. He went to the store and bought one that was 10 ft long
MrRissso [65]

to do this all you have to do is subtract 9.185 form 10 to get .815ft

5 0
3 years ago
HELP ASAP!! Linear Equations<br>x/7=3<br><br>A. 21<br>B. 3/7<br>C. 20<br>D. -21​
vredina [299]

Answer:

21

Step-by-step explanation:

put 21 were x is and then divide 21÷7=3

6 0
2 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • Which is heaviest <br><br> a bicycle <br> a pencil <br> a dog<br> an elephant
    6·1 answer
  • I need to know how to write this word problem in an algebraic expression with answer at 8 a.m. to automobile started from the sa
    11·1 answer
  • Help me out with this.
    13·1 answer
  • What are all the common factors of 24,64,88
    12·1 answer
  • Sam has a loan for $1200 at a rate of 9% annually. How much interest will he pay in 5 years?
    8·2 answers
  • Find the volume of a shoe box that measures 7 inches by 18 inches by 14 inches
    14·2 answers
  • How much bigger is 1 1/4 inch than 5/8 inch
    11·1 answer
  • ...........................​
    15·1 answer
  • PLEASE HELP making brainliest if correct
    9·1 answer
  • This is confusinggggg
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!