Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms.[2] In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process.[3] In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type
1 is true 2 is true 3 is true 4 is falls and all the rest are true
Answer:
Option 1, No. The highest frequency of heterozygotes under Hardy-Weinberg equilibrium is 0.5
Explanation:
As per Hardy Weinberg’s equilibrium principle, the maximum frequency of heterozytotic individuals occur only when half of the population is dominant and recessive homozygous.
In other way when the sum of frequency of dominant and recessive species is equal to 0.5, only then the frequency of heterozygotes is maximum which in any case would not be higher than 0.5.
Hence, option 1 is correct
<span>protista is a producer because it is a plant</span>