Answer:
1. n = 0.174mol
2. T= 26.8K
3. P = 1.02atm
4. V = 126.88L
Explanation:
1. P= 2.61atm
V = 1.69L
T = 36.1 °C = 36.1 + 273= 309.1K
R = 0.082atm.L/mol /K
n =?
n = PV / RT = (2.61x1.69)/(0.082x309.1)
n = 0.174mol
2. P = 302 kPa = 302000Pa
101325Pa = 1atm
302000Pa = 302000/101325 = 2.98atm
V = 2382 mL = 2.382L
T =?
n = 3.23 mol
R = 0.082atm.L/mol /K
T= PV /nR = (2.98x2.382)/(3.23x0.082) = 26.8K
3. P =?
V = 0.0250 m³ = 25L
T = 288K
n = 1.08mol
R = 0.082atm.L/mol /K
P = nRT/V = (1.08x0.082x288)/25 = 1.02atm
4. P = 782 torr
760Torr = 1 atm
782 torr = 782/760 = 1.03atm
V =?
T = 303K
n = 5.26 mol
R = 0.082atm.L/mol /K
V = nRT/P
V = (5.26x0.082x303)/1.03 = 126.88L
Answer:
Please refer to the attachment for answers.
Explanation:
Please refer to the attachment for explanation
Answer:
The correct answer is 10.939 mol ≅ 10.94 mol
Explanation:
According to Avogadro's gases law, the number of moles of an ideal gas (n) at constant pressure and temperature, is directly proportional to the volume (V).
For the initial gas (1), we have:
n₁= 1.59 mol
V₁= 641 mL= 0.641 L
For the final gas (2), we have:
V₂: 4.41 L
The relation between 1 and 2 is given by:
n₁/V₁ = n₂/V₂
We calculate n₂ as follows:
n₂= (n₁/V₁) x V₂ = (1.59 mol/0.641 L) x 4.41 L = 10.939 mol ≅ 10.94 mol