This question comes with four answer choices:
<span>A. H2O + H2O ⇄ 2H2 + O2
B. H2O + H2O⇄ H2O2 + H2
C. H2O + H2O ⇄ 4H+ + 2O2-
D. H2O + H2O ⇄ H3O+ + OH-
Answer: option </span><span>D. H2O + H2O ⇄ H3O+ + OH-
(the +sign next to H3O is a superscript, as well as the - sing next to OH)
Explanation:
The self-ionization of water, or autodissociation, produces the two ions H3O(+) and OH(-). The presence of ions is what explain the electrical conductivity of pure water.
</span><span>In this, one molecule of H2O loses a proton (H+) (deprotonates) to become a hydroxide ion, OH−. Then, he <span>hydrogen ion, H+</span>, immediately protonates another water molecule to form hydronium, H3O+.
</span>
In nuclear fission heavier elements are split to make lighter elements whilst releasing energy. An atom, its nucleus to be more specific, is bombarded with neutrons. The nucleus becomes unstable and it starts to split/decay. It creates the fusion products. Neutrons and lighter elements are released; the neutrons from the nuclei of the atom(s) being split.
The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
Answer:
e−(Ea/RT): the fraction of the molecules present in a gas which have energies equal to or in excess of activation energy at a particular temperature