Answer:
Both are endothermic reactions.
Explanation:
Chemical equation:
1/2H₂(g) + 1/2I₂(g) → HI(g) + 6.2 kcal/mol
Chemical equation:
21.0 kcal/mol + C(s) + 2S(s) → CS₂
Both reaction are endothermic because heat is added in both of reactions.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Sun spots- dark circles on the sun’s surface that I believe are areas of cooler temperatures.
Solar flares- arcs of fire that leap from the sun’s surface. Nothing special, they’re a daily roumaine for the sun
Answer:
58
Explanation:
mass number of iron 58 is 58
Answer:
a. Moles in the vessel = 1.85 moles of the gas
b. 1.11x10²⁴ molecules are in the vessel
Explanation:
a.It is possible to determine moles of a gas using the general law of gases:
PV = nRT
<em>Where P is pressure: 5.00atm; V is volume = 9.00L; R is gas constant: 0.082atmL/molK; T is absolute temperature: 273.15K +24.0 = 297.15K</em>
<em />
Computing the values:
PV / RT = n
5.00atm* 9.00L / 0.082atmL/molK*297.15K = n
<h3>Moles in the vessel = 1.85 moles of the gas</h3><h3 />
b. With Avogadro's number we can convert moles of any compound to molecules thus:
Avogadro's number = 6.022x10²³ molecules / mole
1.85moles ₓ (6.022x10²³ molecules / mole) =
<h3>1.11x10²⁴ molecules are in the vessel</h3>