Constructive interference of two coherent waves will occur if the path difference is λ/2.
<h3>Constructive interference:</h3>
When two waves are in phase and their maxima add, a process known as constructive interference occurs where the combined amplitude of the two waves equals the sum of their individual amplitudes.
The resultant wave is created by adding the amplitudes of two waves that are in phase and traveling in the same direction. The waves in this instance are said to have experienced beneficial interference. The upward displacement of the medium is higher than the displacement of the two interfering pulses because upward displacement occurs when the waves experience constructive interference. When the phase difference between the waves is an even multiple of (180°), constructive interference happens.
Learn more about constructive interference here:
brainly.com/question/17329186
#SPJ4
Answer:
Without this slack, a locomotive might simply sit still and spin its wheels. The loose coupling enables a longer time for the entire train to gain momentum, requiring less force of the locomotive wheels against the track. In this way, the overall required impulse is broken into a series of smaller impulses. (This loose coupling can be very important for braking as well).
Explanation:
I think it is 500 cm. Hope I helped!
Answer:
Backwash effect
Explanation:
Your friend moved along the shore due to ; The swash effect and the Backwash effect
Swash effect is caused by the upsurge of water up along the slopping front of the beach and this same upsurge in water moves back into the beach in what is known as the backwash effect hence the movement of your friend form where they were in the surf zone to another position still within the surface zone is caused by the BACKWASH EFFECT
Answer: Jupiter's mass
Explanation:
From Kepler's third law:

where T is the orbital period of a satellite, a is the average distance of the satellite from the Planet, M is the mass of the planet, G is the gravitational constant.
If the average distance of one of Jupiter's moons to Jupiter and its orbital period around Jupiter is given then mass of the Jupiter can be found:
