Answer:
Explanation:
Acceleration is the change in velocity with respect to time.
Acceleration = change in velocity/Time
Acceleration = final velocity - initial velocity/Time
Given initial velocity = 10m/s
Final velocity = 20m/s
Time taken = 4s
Acceleration = 20-10/4
Acceleration = 10/4
Acceleration =2.5m/s²
For the second part of the question:
Given parameters
initial velocity = 15m/s
acceleration = -3m/s²
time = 4seconds
a = v-u/t
-3 = v-15/4
cross multiply
-12 = v-15
add 15 from both sides
-12+15 = v-15+15
3 = v
<em>Hence the final velocity of the car is 3m/s</em>
The final velocity of the ball that is dropped from a height of 200m is v = 44.73 m/s .
<h3>What is velocity with example?</h3>
The rate at which an object is travelling in one direction is referred to as its velocity. an automobile traveling north on a highway, or a rocket taking off. Its velocity vector's absolute value always is equal to the motion's speed because it is a scalar.
<h3>Briefing:</h3>
Given the initial velocity of the ball (u) = 0
Distance travelled by the ball (s) = 200m
Acceleration (a) = 10 m/s²
As we know:
v² = u² + 2as
Putting values:
v² = 0+2 × (10 m/s²) × (200 m)
v = 44.73 m/s.
To know more about Velocity visit:
brainly.com/question/18084516
#SPJ9
What it looks to be that you found in A was the "initial"...b/c the question asks:
<span>"how much energy does the electron have 'initially' in the n=4 excited state?" </span>
<span>"final" would be where it 'finally' ends up at, ie. its last stop...as for this question...the 'ground state' as in its lowest energy level. </span>
The answer comes to: <span>−1.36×10^−19 J</span>
You use the same equation for the second part as for part a.
<span>just have to subract the 2 as in the only diff for part 2 is that you use 1squared rather than 4squared & subract "final -initial" & you should get -2.05*10^-18 as your answer. </span>
-12.25N
Explanation:
Given parameters:
Mass of shopping cart = 7kg
Time = 2s
initial velocity = 3.5m/s
Unknown:
Average net force required to stop the cart = ?
Solution;
According to newton's second law"acceleration of body results when a net force acts on a body".
F = ma
where F is the force
m is the mass
a is the acceleration
Acceleration is the change in velocity with time
a = 
Therefore;
F = m x 
v is the final velocity, in this case it is zero, 0
u is the initial velocity
t is the time taken
Putting in the parameters:
F = 7 x
= -12.25N
This force that will stop the cart will be directed in the opposite direction with a magnitude of 12.25N
Learn more:
Newton's law brainly.com/question/11411375
#learnwithBrainly