Answer:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
5
2
−
4
1
+
8
=
0
5x^{2}-41x+8=0
5x2−41x+8=0
=
5
a={\color{#c92786}{5}}
a=5
=
−
4
1
b={\color{#e8710a}{-41}}
b=−41
=
8
c={\color{#129eaf}{8}}
c=8
=
−
(
−
4
1
)
±
(
−
4
1
)
2
−
4
⋅
5
⋅
8
√
2
⋅
5
2
Simplify
3
Separate the equations
4
Solve
Solution
=
8
=
1
5
When you represent intervals on the number line, you're including full dots, excluding empty dots, and you're considering numbers highlighted by the line.
In the first case, you've highlighted everything before -2 (full dot, thus included), and everything after 1 (empty dot, excluded). So, the set would be

or, in interval notation,
![(-\infty,-2]\cup (1,\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C-2%5D%5Ccup%20%281%2C%5Cinfty%29)
In the second case, you are looking for all numbers between -3 and 5. This interval is symmetric with respect to 1: you're considering all numbers that are at most 4 units away from 1, both to the left and to the right.
This means that the difference between your numbers at 1 must be at most 4, which is modelled by

where the absolute values guarantees that you'll pick numbers to the left and to the right of 1.
Answer:
6 neighbors
Step-by-step explanation:
1 bread can be given to 2 neighbors when cut in half(1/2). This case, you have 3 bread so 3x2=6