Answer:

Step-by-step explanation:

Standard form for the equation of the line is

Solution:
Given point is (2, –5).
slope of the line m = 
Here, 
Equation of a line passing through the point:




Subtract 15 from both sides of the equation.


Standard form for the equation of the line is

Answer:



Step-by-step explanation:
r = Radius
h = Height
Volume of cylinder = 

Surface area is given by

Differentiating with respect to radius we get

Equating with zero we get


So, the value of the function is minimum at 

So, the radius and height which would minimize the surface area is 1.05 feet and 2.12 feet respectively.
Surface area

The minimum surface area is
.
divisions between $389$ and $390$ so each division is $\frac{390-389}{10}=0.1$
A is 8 division from $389$, so, A is $389+8\times 0.1=389.8$
similarly, C is one division behind $389$ so it is $389-1\times 0.1=388.9$
and B is $390.3$
He equation of a parabola is x = -4(y-1)^2. What is the equation of the directrix?
<span>You may write the equation as </span>
<span>(y-1)^2 = (1) (x+4) </span>
<span>(y-k)^2 = 4p(x-h), where (h,k) is the vertex </span>
<span>4p=1 </span>
<span>p=1/4 </span>
<span>k=1 </span>
<span>h=-4 </span>
<span>The directrix is a vertical line x= h-p </span>
<span>x = -4-1/4 </span>
<span>x=-17/4 </span>
<span>------------------------------- </span>
<span>What is the focal length of the parabola with equation y - 4 = 1/8x^2 </span>
<span>(x-0)^2 = 8(y-4) </span>
<span>The vertex is (0,4) </span>
<span>4p=8 </span>
<span>p=2 (focal length) -- distance between vertex and the focus </span>
<span>------------------------------- </span>
<span>(y-0)^2 = (4/3) (x-7) </span>
<span>vertex = (7,0) </span>
<span>4p=4/3 </span>
<span>p=1/3 </span>
<span>focus : (h+p,k) </span>
<span>(7+1/3, 0)</span>