Answer:
1:12
2:-32
3: -35
4: -10
5: 24
6: 90
7: 41. I used the properties of multiplication to find the product by multiplying 41•1=41 and the 2 negatives cancel each other out.
8: the product is -80. What she could've done is forgot to add the negative sign.
Step-by-step explanation:
Answer:
C. 72 sorry if its wrong
Step-by-step explanation:
trapezoid formula : A= 1/2h(B+b)
plug in:
A= 1/2×6(10+14)
A= 3(24)
A= 72
Answer:38x-34
Step-by-step explanation:
f(x)=x^2+3x-7
g(x)=5x-3
We multiply the entire F equation times two, (x^2+3x-7)*4=
(4x^2+12x-28)
Now the entire g equation by 2, (5x-3)*2
(10x-6)
Now we add both equation
(4x^2+12x-28)+(10x-6)
(4x^2+22x-34)
(4x*4x+22x-34)
(16x+22x-34)
38x-34
Hopefully this is correct :)))
Assume 0 < <em>x</em>/2 < <em>π</em>/2. Then
tan²(<em>x</em>/2) + 1 = sec²(<em>x</em>/2) ===> sec(<em>x</em>/2) = √(1 - tan²(<em>x</em>/2))
===> cos(<em>x</em>/2) = 1/√(1 - tan²(<em>x</em>/2))
===> cos(<em>x</em>/2) = 1/√(1 - <em>t</em> ²)
We also know that
sin²(<em>x</em>/2) + cos²(<em>x</em>/2) = 1 ===> sin(<em>x</em>/2) = √(1 - cos²(<em>x</em>/2))
Recall the double angle identities:
cos(<em>x</em>) = 2 cos²(<em>x</em>/2) - 1
sin(<em>x</em>) = 2 sin(<em>x</em>/2) cos(<em>x</em>/2)
Then
cos(<em>x</em>) = 2/(1 - <em>t</em> ²) - 1 = (1 + <em>t</em> ²)/(1 - <em>t</em> ²)
sin(<em>x</em>) = 2 √(1 - 1/(1 - <em>t</em> ²)) / √(1 - <em>t</em> ²) = 2<em>t</em>/(1 - <em>t</em> ²)