Answer:
For a velocity versus time graph how do you know what the velocity is at a certain time?
Ans: By drawing a line parallel to the y axis (Velocity axis) and perpendicular to the co-ordinate of the Time on the x axis (Time Axis). The point on the slope of the graph where this line intersects, will be the desired velocity at the certain time.
_____________________________________________________
How do you know the acceleration at a certain time?

Hence,
By dividing the difference of the Final and Initial Velocity by the Time Taken, we could find the acceleration.
_________________________________________________________
How do you know the Displacement at a certain time?
Ans: As Displacement equals to the area enclosed by the slope of the Velocity-Time Graph, By finding the area under the slope till the perpendicular at the desired time, we find the Displacement.
_________________________________________________________
Answer:
The sound level of the 26 geese is 
Explanation:
From the question we are told that
The sound level is 
The number of geese is 
Generally the intensity level of sound is mathematically represented as
The intensity of sound level in dB for one goose is mathematically represented as
![Z_1 = 10 log [\frac{I}{I_O} ]](https://tex.z-dn.net/?f=Z_1%20%3D%2010%20log%20%5B%5Cfrac%7BI%7D%7BI_O%7D%20%5D)
Where I_o is the threshold level of intensity with value 
is the intensity for one goose in 
For 26 geese the intensity would be

Then the intensity of 26 geese in dB is
![Z_{26} = 10 log[\frac{26 I }{I_o} ]](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%5B%5Cfrac%7B26%20I%20%7D%7BI_o%7D%20%5D)
![Z_{26} = 10 log (\ \ 26 * [\frac{ I }{I_o} ]\ \ )](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%20%28%5C%20%5C%2026%20%2A%20%20%5B%5Cfrac%7B%20I%20%7D%7BI_o%7D%20%5D%5C%20%5C%20%29)
![Z_{26} = 10 log (\ \ 26 \ \ ) * (\ \ 10 log [\frac{ I }{I_o} ]\ \ )](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%20%28%5C%20%5C%2026%20%20%5C%20%5C%20%29%20%2A%20%20%20%28%5C%20%5C%20%2010%20log%20%5B%5Cfrac%7B%20I%20%7D%7BI_o%7D%20%5D%5C%20%5C%20%29)
From the law of logarithm we have that
![Z_{26} = 10 log 26 + 10 log [\frac{I}{I_0} ]](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%2026%20%2B%20%2010%20log%20%5B%5Cfrac%7BI%7D%7BI_0%7D%20%5D)


Answer:
1.122 m/s
Explanation:
So usually a river with a speed of 1 meters per second can transport particle that weighs:

If the particle is twice as massive as usual, then its weights would be 1 * 2 = 2kg
This means the river must be flowing at a speed of

The Huns' invasion of Europe caused a mass migration driving Germanic tribes of Northern Europe to the borders of the Roman Empire which led to the Barbarian attacks on Rome.
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>