Answer:
The surface gravity is inversely proportional to the square of the radius of the planet
Explanation:
The gravity at the surface of a planet is given by:

where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
We see from the formula that the surface gravity is inversely proportional to the square of the radius of the planet, R.
At the Earth's surface, the value of the surface gravity is approximately 9.81 m/s^2.
For a photographer that wishes to determine the color of light that he can use in a dark room that will not expose the films he is processing, having used a Blue Incandescent bulb, he should proceed to use a Red Incandescent bulb for the next trial.
The photographer in question is performing an experiment. For these kinds of experiments it is important to identify the variables present, which can be of three kinds:
- Control variables
- Dependent variables
- Independent variables
For this experiment, the dependent variable is the exposure of the light onto the films, given that this is what we wish to measure. The independent variable will be the color of the light being used which is what will affect the dependent variable.
The remaining variable must be the control variable. Unlike the previous variables, we can have more than one of these. The control variable is there to make sure that only the dependent variable is affecting the outcome. We do this by keeping the control variable the same through each trial, which is why the photographer should not change the type of bulb in the second experiment, changing only the color of the light.
To learn more visit:
brainly.com/question/1549017?referrer=searchResults
The volume of the rod is 1.26×10⁻⁵ m³, and the linear charge density of the rod is 3.64 C/m
<h3>What is volume?:</h3>
This is the product of the height of a solid object and its crossectional area.
The Volume of the rod is can be calculated using the formula below.
Note: A rod has the shape of a cylinder.
Formula:
- V = πr²h............... Equation 1
Where:
- V = Volume of the rod
- r = radius of the rod
- h = height of the rod.
From the question,
Given:
- r = 4mm = 0.004 m
- h = 25 cm = 0.25 m
- π = 3.14
Substitute these values into equation 1
- V = 3.14(0.004²)(0.25)
- V = 1.26×10⁻⁵ m³
<h3>What is linear charge density:</h3>
This is the ratio of the charge on an object to the length of the object.
The linear charge density of the rod can be calculated using the formula below.
- D = Q/h.................... Equation 2
Where:
- D = Linear charge density of the rod
- Q = Charge on the rod.
- h = height or length of the rod
From the question
Given:
- Q = 0.91 C
- h = 25 cm = 0.25 m
Substitute these values into equation 2
- D = 0.91/0.25
- D = 3.64 C/m
Hence, The volume of the rod is 1.26×10⁻⁵ m³, and the linear charge density of the rod is 3.64 C/m
Learn more about charge density here: brainly.com/question/14568868
Answer:
i3 =11.014A
i5 = 3.15A
Explanation:
Here according to k'chofs first law
i1 =i2 + i3
i3 = i4 + i5
For determine the i1 you have to consider the resultant resistor of the system
4 , 1 and 3 resistors are in pararel
Then, Resultant is
1/4 + 1/1 + 1/3 = 1/ R
R = 12/19
For get total we have to add another remaining 3 resistor because of serious
Then Resultant is = 12/19 + 3
= 69/19
Then using V = IR
40 =i3* 69/19
i3 = 11.014 A
Other 3 resistors are parrarel because of this voltage of those resistors are same.
Then i inversely propotional to its resistor
Then ,
i5 * 2 = (i3-i5)*4/5
i 5 = 3.15 A
956.602hz.
Sorry for the late answer, just came across this.