To solve this problem we will apply the concepts related to Newton's second law that relates force as the product between acceleration and mass. From there, we will get the acceleration. Finally, through the cinematic equations of motion we will find the time required by the object.
If the Force (F) is 42N on an object of mass (m) of 83000kg we have that the acceleration would be by Newton's second law.

Replacing,


The total speed change
we have that the value is 0.71m/s
If we know that acceleration is the change of speed in a fraction of time,

We have that,


Therefore the Rocket should be fired around to 1403.16s
Loss of habitats for fish, birds, and other wildlife. Sediment pollution is one of the leading causes of the loss of the wetlands, but it’s not just the wetlands. Changes in the nutrients in your water. The same problem that affects the fish in your area may also affect you. Other drinking water contamination.
Answer:
Ships can float because a ship is less dense than that of the water that it floats on.
Explanation:
Hope this helps!
A. 9 J
In a force-distance graph, the work done is equal to the area under the curve in the graph.
In this case, we need to extrapolate the value of the force when the distance is x=30 cm. We can easily do that by noticing that there is a direct proportionality between the force and the distance:

where k is the slope of the line. We can find k, for instance chosing the point at x=5 cm and F=10 N:

And now we can calculate the work by calculating the area under the curve until x=30 cm, F=60 N:

B. 24.5 m/s
The mass of the arrow is m=30 g=0.03 kg. The kinetic energy of the arrow when it is released is equal to the work done by pulling back the bow for 30 cm:

where m is the mass of the arrow and v is its speed. By re-arranging the formula and using W=9 J, we find the speed:
