Answer:
A. Its translational kinetic energy is larger than its rotational kinetic energy.
Explanation:
Given that
Radius = R
Mass = M
We know that mass moment of inertia for the solid sphere

Lets take angular speed =ω
Linear speed =V
Condition for pure rolling , V= ω R
Rotation energy ,RE





RE= 0.2 MV²
The transnational kinetic energy TE

TE= 0.5 MV²
From above we can say that transnational energy is more than rotational energy.
Therefore the answer is A.
<span>In this particular case, where car is moving through curvature, so it is moving in circular motion, force acting on car is centripetal force which holds car not to fly out. Centripetal force is always pointed in the middle of circle. Here frictional force has role of centripetal force. If frictional force is to weak, car would fly out of curvutare.</span>
Using the equation v(avg)=distance/time
and the equation v=v(original)+a(t)
solve for acceleration
2600=0+a(12)
a=216.66666 m/s^2
Then, you use the equation
v^2=v(original)+2a*(change in x)
2600^2=2(216.666666)*change in x
6760000/2/216.666666 = 15600 meters which is the length of the race
Then using v(avg)=x/t
15600/12= 1300 m/s
According to the second law of thermodynamics,
the answer is
<span>4. The entropy of the universe is increasing. </span>
When the ruler is broughı near the inetal knob, it repels electrons in the metal. Electrons move away froni the ruler and down the metal rod. The knob now has a positive charge. The thin pieces of metal foil at the bottom of the metal rod now have a negative charge.