Answer:
a = 0 m/s²
Explanation:
given,
car moving at steady velocity = 100 Km/h
1 km/h = 0.278 m/s
100 Km/h = 27.8 m/s
time of acceleration = 100 s
acceleration is equal to change in velocity per unit time.

change in velocity of the car is 27.8 - 27.8 = 0

a = 0 m/s²
If the car is moving with steady velocity then acceleration of the car is zero.
Hence, the acceleration of the car is equal to a = 0 m/s²
The anti-lock braking system (ABS) is a car component that enables the driver to execute complex maneuvers. Furthermore, it allows shifting the position of your car when driving on highways because of its ability to "maintain traction." It also can decrease the kinetic energy of your car when you want to make it decelerated.
Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Well if the ship was in space their shouldn’t be a loud bang. Because you can’t hear anything in space