1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
2 years ago
15

What is an object's mass if it accelerates at 5 m/s2 when a force of 0.5 N is applied?

Physics
1 answer:
LenaWriter [7]2 years ago
6 0

Answer:

0.1kg

Explanation:

mass = force / acceleration

0.5 / 5

0.1kg

You might be interested in
Which of the following have derived units?<br> A. 56 kg<br> B. 2.5 m<br> C. 87 m/s²<br> D. 60 N
photoshop1234 [79]

Answer:

The answer is C!!!!!!!

Becuz meters and seconds are derived into m/s²

Explanation:

Plss follow me and Mark as brainlest

Thanks :-)

6 0
3 years ago
Read 2 more answers
Please help. I don’t understand this
skad [1K]

The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is

1/2 • (10.0 m/s) • (4.0 s) = 20.00 m

Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as

<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>

and under constant acceleration,

<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2

According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so

∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2

∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2

∆<em>x</em> = 20.00 m

5 0
2 years ago
A large helium filled balloon is used as the center piece for a graduation party. The balloon alone has a mass of 222 kg and it
inn [45]

Answer:

The buoyant force is 3778.8 N in upward.

Explanation:

Given that,

Mass of balloon = 222 Kg

Volume = 328 m³

Density of air = 1.20 kg/m³

Density of helium = 0.179 kg/m³

We need to calculate the buoyant force acting

Using formula of buoyant force

F_{b}=\rho_{air}\times V_{b}\times g

Where, \rho_{air} = density of air

V = Volume of balloon

g = acceleration due to gravity

Put the value into the formula

F_{b}=1.20\times321\times9.81

F_{b}=3778.8\ N

This buoyant force is in upward direction.

Hence, The buoyant force is 3778.8 N in upward.

4 0
3 years ago
A 2.00-m long uniform beam has a mass of 4.00 kg. The beam rests on a fulcrum that is 1.20 m from its left end. In order for the
Shalnov [3]

Answer:

x ’= 1,735 m,  measured from the far left

Explanation:

For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.

Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive

             

They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,

the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar

           x_{cm} = 1.2 -1

          x_ {cm} = 0.2 m

          Σ τ = 0

          w₁ 1.2 + mg 0.2 - W₂ x = 0

          x = \frac{m_1 g\ 1.2 \ + m g \ 0.2}{M_2 g}

          x = \frac{m_1 \ 1.2 \ + m \ 0.2 }{M_2}

let's calculate

          x = \frac{2.9 \ 1.2 \ + 4 \ 0.2 }{8.00}2.9 1.2 + 4 0.2 / 8

           

          x = 0.535 m

measured from the pivot point

measured from the far left is

           x’= 1,2 + x

           x'=  1.2 + 0.535

           x ’= 1,735 m

8 0
2 years ago
A current of 4.00 mA flows through a copper wire. The wire has an initial diameter of 4.00 mm which gradually tapers to a diamet
lesya692 [45]

The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

The given parameters;

  • <em>Current flowing in the wire, I = 4.00 mA</em>
  • <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
  • <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
  • <em>Length of wire, L = 2.00 m</em>
  • <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>

<em />

The initial area of the copper wire;

A_1 = \frac{\pi d^2}{4} = \frac{\pi \times (0.004)^2}{4} =1.257\times 10^{-5} \ m^2

The final area of the copper wire;

A_2 = \frac{\pi d^2}{4} = \frac{\pi (0.001)^2}{4} = 7.86\times 10^{-7} \ m^2

The initial drift velocity of the electrons is calculated as;

v_d_1 = \frac{I}{nqA_1} \\\\v_d_1 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 1.257\times 10^{-5}} \\\\v_d_1 = 2.34 \times 10^{-8} \ m/s

The final drift velocity of the electrons is calculated as;

v_d_2 = \frac{I}{nqA_2} \\\\v_d_2 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 7.86\times 10^{-7}} \\\\v_d_2 = 3.74\times 10^{-7}  \ m/s

The change in the mean drift velocity is calculated as;

\Delta v = v_d_2 -v_d_1\\\\\Delta v = 3.74\times 10^{-7} \ m/s \ -\ 2.34 \times 10^{-8} \ m/s = 3.506\times 10^{-7} \ m/s

The time of motion of electrons for the initial wire diameter is calculated as;

t_1 = \frac{L}{v_d_1} \\\\t_1 = \frac{2}{2.34\times 10^{-8}} \\\\t_1 = 8.547\times 10^{7} \ s

The time of motion of electrons for the final wire diameter is calculated as;

t_2 = \frac{L}{v_d_1} \\\\t_2= \frac{2}{3.74 \times 10^{-7}} \\\\t_2 = 5.348 \times 10^{6} \ s

The average acceleration of the electrons is calculated as;

a = \frac{\Delta v}{\Delta t} \\\\a = \frac{3.506 \times 10^{-7} }{(8.547\times 10^7)- (5.348\times 10^6)} \\\\a = 4.38\times 10^{-15} \ m/s^2

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

Learn more here: brainly.com/question/22406248

7 0
2 years ago
Other questions:
  • Chemical weathering is the breakdown of rocks by changing their color and size.
    6·2 answers
  • A flying saucer moving initially at 20 m/s[E] accelerates to 50 m/s[W] in 3.8 s. Find the saucer's average
    12·1 answer
  • PLZ HELP!!!!!what would happen if a science experiment if it didn't have a well-defined question(it's for an odessey writer and
    5·1 answer
  • Why does aluminum expand more than copper
    15·2 answers
  • Sometimes, when the wind blows across a long wire, a low-frequency "moaning" sound is produced. The sound arises because a stand
    15·1 answer
  • Seven little spheres of mercury, each with a diameter of 2 mm. When they coalesce to form a single sphere, how big will it be (i
    11·1 answer
  • Which activity would help maintain homeostasis during exercise?
    5·2 answers
  • Which of the following statements correctly describes the relationship between frequency and pitch?
    5·1 answer
  • Find the acceleration of a 2 kg block with a force of 4 N
    14·1 answer
  • Define physical quantity​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!