Answer:
The answer is C!!!!!!!
Becuz meters and seconds are derived into m/s²
Explanation:
Plss follow me and Mark as brainlest
Thanks :-)
The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
Answer:
The buoyant force is 3778.8 N in upward.
Explanation:
Given that,
Mass of balloon = 222 Kg
Volume = 328 m³
Density of air = 1.20 kg/m³
Density of helium = 0.179 kg/m³
We need to calculate the buoyant force acting
Using formula of buoyant force

Where,
= density of air
V = Volume of balloon
g = acceleration due to gravity
Put the value into the formula


This buoyant force is in upward direction.
Hence, The buoyant force is 3778.8 N in upward.
Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248