The change in the total energy of the object is zero (0).
The given parameters:
work done by the machine, W = 50 J
mass of the object, m = 10 kg
To find:
the change in the total energy of the object
The change in the total energy of the object is the difference between the objects initial energy due to its position and the work done on the object.
Based on work energy-theory, the work done on the object is equal to the energy of the object.
- The energy of the object = work-done on the object
- The change in total energy = 50 J - 50 J = 0
Thus, the change in the total energy of the object is zero (0).
Learn more here: brainly.com/question/20377140
Solution:
According to the equations for 1-D kinematics. The only change to them is that instead one equation that describes general motion.
So we will have to use the equations twice: once for motion in the x direction and another time for the y direction.
v_f=v_o + at ……..(a)
[where v_f and v_o are final velocity and initial velocity, respectively]
Now ,
Initially, there was y velocity, however gravity began to act on the football, causing it to accelerate.
Applying this value in equation (a)
v_yf = at = -9.81 m/s^s * 1.75 = -17.165 m/s in the y direction
For calculating the magnitude of the equation we have to square root the given value
(16.6i - 17.165y)
\\
\left | V \right |=sqrt{16.6^{2}+17.165^{2}}\\ =
\sqrt{275.56+294.637225}\\=
\sqrt{570.197225}\\=
23.87[/tex]
Answer:
The wires are connected to both terminals of the battery, so they form a closed loop. Most circuits have devices such as light bulbs that convert electrical energy to other forms of energy. ... When the switch is turned on, the circuit is closed and current can flow through it.
Explanation:
Answer:
The answer to your question is Pe = 2452.5 J
Explanation:
Data
mass = 50 kg
height = 5 m
gravity = 9.81 m/s²
Process
The energy of this process is Potential energy which is proportional to the mass of the body, the gravity and the height of the body.
Pe = mgh
Substitution
Pe = (50)(5)(9.81)
Simplification
Pe = 2452.5 J
Answer:
0.015 m/s2
Explanation:
Using Newtons 2nd law.
F = ma where F = Force applied, m = mass of the object and a = acceleration acquired.
So substitute the values in SI units.
m =
kg
Therefore F = 0.003×5 = 0.015 m/s2