A few different ways to do this:
Way #1:
The current in the series loop is (12 V) / (total resistance) .
(Turns out to be 2 Amperes, but the question isn't asking for that.)
In a series loop, the current is the same at every point, so it's
the same current through each resistor.
The power dissipated by a resistor is (current)² · (resistance),
and the current is the same everywhere in the circuit, so the
smallest resistance will dissipate the least power. That's R1 .
And by the way, it's not "drawing" the most power. It's dissipating it.
Way #2:
Another expression for the power dissipated by a resistance is
(voltage across the resistance)² / (resistance) .
In a series loop, the voltage across each resistor is
[ (individual resistance) / (total resistance ] x battery voltage.
So the power dissipated by each resistor is
(individual resistance)² x [(battery voltage) / (total resistance)²]
This expression is smallest for the smallest individual resistance.
(The other two quantities are the same for each individual resistor.)
So again, the least power is dissipated by the smallest individual resistance.
That's R1 .
Way #3: (Einstein's way)
If we sat back and relaxed for a minute, stared at the ceiling, let our minds
wander, puffed gently on our pipe, and just daydreamed about this question
for a minute or two, we might have easily guessed at the answer.
===> When you wire up a battery and a light bulb in series, the part
that dissipates power, and gets so hot that it radiates heat and light, is
the light bulb (some resistance), not the wire (very small resistance).
Answer:
0.001152m
Explanation:
Linear expansivity of a material is the change in length of the material per unit length per degree rise in temperature. Mathematically,
¢ = ∆L/L1∆°C
¢ is the linear expansivity of the material = 12 x 10⁻⁶ °C⁻¹
Where ∆L is the change in length = L2-L1
L2 is the final length = ?
L1 is the initial length = 12m
∆°C is the change in temperature = °C2 - °C1 = 50-(-30) = 80°C
Substituting this values inside the formula to get the final length L2 after expansion, we have;
12 x 10⁻⁶ °C⁻¹ = L2-12/12×80
12 x 10⁻⁶ °C⁻¹ = L2-12/960
L2-12= 960×12 x 10⁻⁶ °C⁻¹
L2-12 = 0.001152
L2 = 12+0.001152
L2 = 12.001152m
Expansion will be the change in length L2-L1 = 12.001152-12
= 0.001152m
The expansion cracks between the slabs should be 0.001152m wide to prevent buckling
Answer:
Just as distance and displacement have distinctly different meanings (despite their similarities), so do speed and velocity. Speed is a scalar quantity that refers to "how fast an object is moving." Speed can be thought of as the rate at which an object covers distance. A fast-moving object has a high speed and covers a relatively large distance in a short amount of time. Contrast this to a slow-moving object that has a low speed; it covers a relatively small amount of distance in the same amount of time. An object with no movement at all has a zero speed.
Answer:
The oscillation frequency of the spring is 1.66 Hz.
Explanation:
Let m is the mass of the object that is suspended vertically from a support. The potential energy stored in the spring is given by :

k is the spring constant
x is the distance to the lowest point form the initial position.
When the object reaches the highest point, the stored potential energy stored in the spring gets converted to the potential energy.

Equating these two energies,

.............(1)
The expression for the oscillation frequency is given by :

(from equation (1))

f = 1.66 Hz
So, the oscillation frequency of the spring is 1.66 Hz. Hence, this is the required solution.
Answer:
When original wave superimpose with its own reflected wave travelling in opposite direction then it will produce standing wave
Explanation:
Let say the equation of original wave is

now the equation of its reflected wave which is reflected 100% is given as

now by superposition of above two waves we will have



so above shows the equation of standing wave
so we can say that When original wave superimpose with its own reflected wave travelling in opposite direction then it will produce standing wave