Answer:
The potential difference between the plates is 596.2 volts.
Explanation:
Given that,
Capacitance 
Charge 
Separation of plates = 0.313 mm
We need to calculate the potential difference between the plates
Using formula of potential difference

Where, Q = charge
C = capacitance
Put the value into the formula


Hence,The potential difference between the plates is 596.2 volts.
Explanation:
Fgravity = G*(mass1*mass2)/D².
G is the gravitational constant, which has the same value throughout our universe.
D is the distance between the objects.
so, if you triple one of the masses, what does that do to our equation ?
Fgravitynew = G*(3*mass1*mass2)/D²
due to the commutative property of multiplication
Fgravitynew = 3* G*(mass1*mass2)/D² = 3* Fgravity
so, the right answer is 3×12 = 36 units.
Answer:


Explanation:
= Initial momentum of the pin = 13 kg m/s
= Initial momentum of the ball = 18 kg m/s
= Momentum of the ball after hit
= Angle ball makes with the horizontal after hitting the pin
= Angle the pin makes with the horizotal after getting hit by the ball
Momentum in the x direction

Momentum in the y direction


The pin's resultant velocity is 

The pin's resultant direction is
below the horizontal or to the right.
Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s