Answer:
A.) 8 m/s
B.) 7.0 m
Explanation:
Given that a block is given an initial velocity of 8.0 m/s up a frictionless 28° inclined plane.
(a) What is its velocity when it reaches the top of the plane?
Since the plane is frictionless, the final velocity V will be the same as 8 m/s
The velocity will be 8 m/s as it reaches the top of the plane.
(b) How far horizontally does it land after it leaves the plane?
For frictionless plane,
a = gsinø
Acceleration a = 9.8sin28
Acceleration a = 4.6 m/s^2
Using the third equation of motion
V^2 = U^2 - 2as
Substitute the a and the U into the equation. Where V = 0
0 = 8^2 - 2 × 4.6 × S
9.2S = 64
S = 64/9.2
S = 6.956 m
S = 7.0 m
Answer:
increases and decreases
Explanation:
the sunspot cycle is a period of time which varies from as short as nine years to as long as fourteen years where the number of sun spots on the sun increases at the beginning of the cycle and then decreases again towards the end of the cycle.
Object will remain without motion unless some kind of force forces it to change. Hope this helps
To solve the exercise it is necessary to apply the concepts related to Newton's Second Law, as well as the definition of Weight and Friction Force.
According to the problem there is a movement in the body and it is necessary to make a sum of forces on it, so that

There are two forces acting on the body, the Force that is pushing and the opposing force that is that of friction, that is

To find the required force then,

By definition we know that the friction force is equal to the multiplication between the friction coefficient and the weight, that is to say





Therefore the horizontal force applied on the block is B) 230N