Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
Divide
(the distance covered in some period of time)
by
(the time taken to cover the distance).
The quotient is the average speed during that period of time.
The formula for the rotational kinetic energy is

where I is the moment of inertia. This is just mass times the square of the perpendicular distance to the axis of rotation. In other words, the radius of the propeller or this is equivalent to the length of the rod. ω is the angular velocity. We determine I and ω first.

ω = 573 rev/min * (2π rad/rev) * (1 min/60 s) = 60 rad/s
Then,

Answer:
A. DT is given by Q= MCs DT
m = mass of the substances
Cs= is it's specific heat capacity
Ck= <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>Q</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Mk ×DTk
=<u>2</u><u>5</u><u>0</u><u> </u><u>×</u><u> </u><u>9</u><u> </u><u>×</u><u> </u><u>5</u><u> </u><u> </u>
129
=Dt = 180.1085271
answer is 180degree C.
Explanation:
B. = <u>2</u><u>5</u><u>×</u><u>1</u><u>0</u> ×100
1.082
=<u>2</u><u>5</u><u>0</u><u>0</u>
1.082
= 23105.360 g/kj.
Answer:
No, The Moon, on the other hand, rotates once around its every 28 days, and once around the Earth in that same 28 days. The result of this combination is that the same side of the Moon is always facing the Earth.