At the ground the ball will always have velocity along the direction of gravity. If upward motion is taken positive it will always have negative velocity at the ground because, if the ball was given an initial upward velocity then gravity will decelerate it and bring it down with a negative final velocity. If the ball is given an initial downward velocity then the ball will be further accelerated by gravity in the downward direction only, again maintaining negative direction. The magnitude however in both cases will be different. the final velocity at the ground will have higher magnitude in case of elevator moving downwards.
I’m not going to church tomorrow or Friday I don’t want to go go back up
<h2>
Answer: x=125m, y=48.308m</h2>
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which we have two components: x-component and y-component. Being their main equations to find the position as follows:
x-component:
(1)
Where:
is the projectile's initial speed
is the angle
is the time since the projectile is launched until it strikes the target
is the final horizontal position of the projectile (the value we want to find)
y-component:
(2)
Where:
is the initial height of the projectile (we are told it was launched at ground level)
is the final height of the projectile (the value we want to find)
is the acceleration due gravity
Having this clear, let's begin with x (1):
(3)
(4) This is the horizontal final position of the projectile
For y (2):
(5)
(6) This is the vertical final position of the projectile
Answer:
True
Explanation:
Going even smaller than atoms would get you to subatomic particles such as quarks. From there, it is impossible to distinguish elements. So, yes, atoms are the smallest portions of an element that retains the original characteristic of the element.
<span>The last option.
Plants absorb carbon dioxide from the atmosphere, water from the soil and other nutrients also from the soil - salts containing nitrogene, potassium, sulphur, etc. They use water and carbon dioxide to produce sugar through photosyntesis.
Decomposition is the reaction that converts any organic compound back into inorganic compounds - water, carbon dioxide and salts containing nitrogene, potassium, sulphur, etc. So it's basically the opposite.
So photosyntesis uses carbon dioxide as a reactive and take it from the atmosphere, whereas decomposition generates carbon dioxide as a product and releases it to the atmosphere.</span>