Answer:
Group 1 or akali metals have the greatest metallic property.
Group 17 has the lowest metallic character.
C. As you move from right to lefton the periodic table, metallic character increases which is the ability to lose electrons. Ionization energy decrease as we move from right to left on the periodic table.
Explanation:
Akali metals in group 1 have the greatest metallic property and they are the most reactive metals. Francium metal on the group has the most metallic characteristics. It is rare and very radioactive. Group 17 has the lowest metallic character. This is because while moving across the period, the number of electrons in the outermost shell increases. This make it difficult for atoms to leave see electrons and become electropositive . Group 17 has the highest tendency of accepting electrons.
Ionization energy is the energy use to remove electron from an atom in gaseous stage. Ionization energy decrease as we move from right to left on the periodic table and metallic character increases as we move from right to left on the periodic table.
The kind of reaction that occurs when you mix aqueous solutions of barium sulfide and sulfuric acid is a precipitation reaction.
<h3>Further Explanation</h3>
- The chemical reaction between Ba(OH)2(aq) and H2SO4(aq) is given by;
Ba(OH)₂(aq) + H₂SO4(aq) --> BaSO₄(aq) + 2H₂O(l)
- This is a type of precipitation reaction, where a precipitate is formed after the reaction, that is Barium sulfate.
<h3>Other types of reaction</h3><h3>Neutralization reactions </h3>
- These are reactions that involve reacting acids and bases or alkali to form salt and water as the only products.
- For example a reaction between sodium hydroxide and sulfuric acid.
NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + H₂O(l)
<h3>Displacement reactions</h3>
- These are reactions in which a more reactive atom or ion displaces a less reactive ion from its salt.
Mg(s) + CuSO₄(aq) → MgSO₄(aq) + Cu(s)
<h3>Redox reactions </h3>
- These are reactions that involve both reduction and oxidation occuring simultaneously durin a chemical reaction.
- For example,
Mg(s) + CuSO₄(aq) → MgSO₄(aq) + Cu(s)
- Magnesium atom undergoes oxidation while copper ions undergoes reduction.
<h3>Decomposition reactions</h3>
- These are type of reactions that involves breakdown of a compound into its constituents elements.
- For example decomposition of lead nitrate.
Pb(NO3)2(S) → PbO(s) + O2(g) + NO2(g)
Keywords: Precipitation
<h3>Learn more about: </h3>
Level: High school
Subject: Chemistry
Topic: Chemical reactions
Sub-topic: Precipitation reactions
Answer:
Random particle motion in liquids and gases is a difficult concept for in temperature, the particles move faster as they gain kinetic energy.
Explanation:
Answer:
To calculate molarity, divide the number of moles of solute by the volume of the solution in liters. If you don't know the number of moles of solute but you know the mass, start by finding the molar mass of the solute, which is equal to all of the molar masses of each element in the solution added together.
Explanation:
try starting with 35.0 and dived it by the volume
Answer:
There are
4.517
⋅
10
23
atoms of Zn in 0.750 mols of Zn.
Explanation:
Since we know that there are
6.022
⋅
10
23
atoms in every mole of a substance (Avogadro's Number), there are
6.022
E
23
⋅
0.750
atoms of Zn in 0.750 mols of Zn.