1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
9

Water flows into a horizontal, cylindrical pipe at 1.4 m/s. the pipe then narrows until its diameter is halved. what is the pres

sure difference between the wide and narrow ends of the pipe?

Physics
2 answers:
inna [77]3 years ago
3 0

According to the Bernoulli's equation,the pressure difference between the wide and narrow ends of the pipe is given by

\Delta P= \frac{1}{2} \rho ( v^2_{2} - v^2_{1} )

Here,  v_{1} is the velocity of water through wide ends of cylindrical pipe and v_{2} is the velocity of water through narrow ends of cylindrical pipe.

Given, v_{1} =1.4 m/s

Now from equation continuity,

v_{1} A_{1} = v_{2} A_{2}.

Here, A_{1} and A_{2} are cross- sectional areas of wide and narrow ends of cylindrical pipe.

As pipe is circular, so

v_{1} \pi r^2_{1} = v_{2} \pi r^2_{2}.

At the second point, the diameter is halved, which means the radius is also halved. Therefore,

v_{1} r^2_{1} = v_{2}(\frac{1}{2} r_{1})^2 \\\\ v_{2} = 4 v_{1}

v_{2} = 4 \times 1.4 = 5.6 m/s

Substituting these values  with the density of water is 1000 \ kg/m^3 in pressure difference formula we get.

\Delta P= \frac{1}{2} \rho ( v^2_{2} - v^2_{1} )=\frac{1}{2}\times 1000 kg/m^3(5.6^2-1.4^2)\\\\ \Delta P = 14700\ Pa

Aliun [14]3 years ago
3 0

The pressure difference between the wide and the narrow ends of the pipe is  \boxed{14700\,{\text{Pa}}} .

Further Explanation:

According to the equation of continuity, the amount of water entering at one end of the cylindrical pipe is always equal to the amount of water coming out from the other end of the pipe.

{A_1}{v_1}={A_2}{v_2}

Here, {A_1}\,\&\,{A_2}  are the areas of cross-section of the two ends and {v_1}\,\&\,{v_2}  are the velocities of the flow at the two ends.

The area of the cross section of the pipe at the starting end is.

{A_1}=\pi{r^2}

Since the diameter of the pipe is reduced to half at the other end then its radius will also become half. Therefore, the area of cross section of the pipe will be reduced by a factor of 4.

\begin{aligned}{A_2}&=\pi{\left({\frac{r}{2}}\right)^2}\\&=\frac{{\pi{r^2}}}{4}\\&=\frac{{{A_1}}}{4}\\\end{aligned}

The speed of the water flow at the entering point is 1.4\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

Substitute the values in equation (1).

\begin{aligned}{A_1} \times 1.4&=\frac{{{A_1}}}{4}\times{v_2}\\{v_2}&=5.6\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{aligned}

Now according to the Bernoulli’s equation, the change in pressure between the two ends of the cylindrical pipe is given as:

\Delta P=\frac{1}{2}\rho\left({v_2^2 - v_1^2}\right)

The density of the water is 1000\,{{{\text{kg}}}\mathord{\left/{\vphantom{{{\text{kg}}}{{{\text{m}}^{\text{3}}}}}}\right.\kern-\nulldelimiterspace} {{{\text{m}}^{\text{3}}}}} .

Substitute the values in above expression:

\begin{aligned}\Delta P&=\frac{1}{2}\times1000\times\left({{{5.6}^2}-{{1.4}^2}} \right)\\&=500\times29.4\,{\text{Pa}}\\&{\text{ = 14700}}\,{\text{Pa}}\\\end{aligned}

Thus, the pressure difference between the wide and the narrow ends of the pipe is \boxed{14700\,{\text{Pa}}} .

Learn More:

1. A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill <u>brainly.com/question/9805263 </u>

2. For flowing water what is the magnitude of the velocity gradient <u>brainly.com/question/5181841 </u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Fluid Mechanics

Keywords:

Water flows, horizontal cylindrical pipe, diameter is halved, pressure difference, wide and narrow ends, equation of continuity, Bernoulli’s equation, A1v1=A2v2.

You might be interested in
How did Dalton think atoms formed a new substance?
vivado [14]
Dalton's atomic<span> theory proposed that all matter was composed of </span>atoms<span>, indivisible and indestructible building blocks. While all </span>atoms<span> of an element were identical, different elements had </span>atoms<span> of differing size and mass</span>
7 0
3 years ago
Elaborate on the reason(s) that matter is said to move even as in a solid state.
Pepsi [2]
1) The correct answer is
<span>C) The particles are not able to move out of their positions relative to one another, but do have small vibrational movements.
In solids, in fact, particles are bound together so they cannot move freely. However, they can move around their fixed position with small vibrational movements, whose intensity depends on the temperature of the substance (the higher the temperature, the more intense the vibrations). For this reason, we say that matter moves also in solid state.

2)  The correct answer is
</span><span>A) increase the concentration of both solutions
In fact, when we increase the concentration of both solutions, we increase the number of particles that react in both solutions; as a result, the speed of the reaction will increase.

3)  The correct answer is
</span><span>C) gas → liquid → solid
In gases, in fact, particles are basically free to move, so the intermolecular forces of attraction are almost negligible. In liquids, particles are still able to move, however the intermolecular forces of attraction are stronger than in gases. Finally, in solids, particles are bound together, so they are not free to move and the intermolecular forces of attraction are very strong. </span>
3 0
3 years ago
Equipotential surface A has a potential of 5650 V, while equipotential surface B has a potential of 7850 V. A particle has a mas
timurjin [86]

Answer:

0.247 J = 247 mJ

Explanation:

From the principle of conservation of energy, the workdone by the applied force, W = kinetic energy change + electric potential energy change.

So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁) where m = mass of particle = 5.4 × 10⁻² kg, q = charge of particle = 5.10 × 10⁻⁵ C, v₁ = initial speed of particle = 2.00 m/s, v₂ = final speed of particle = 3.00 m/s, V₁ = potential at surface A = 5650 V, V₂ = potential at surface B = 7850 V.

So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁)

          = 1/2 × 5.4 × 10⁻²kg × ((3m/s)² - (2 m/s)²) + 5.10 × 10⁻⁵ C(7850 - 5650)

          = 0.135 J + 0.11220 J

          = 0.2472 J

          ≅ 0.247 J = 247 mJ

5 0
3 years ago
Un objeto tiene una masa de 120 kg y un volumen de 5 m3
melisa1 [442]

Answer: dont ever worry mate

Explanation:

5 0
3 years ago
The chart lists the masses of four planets.
notka56 [123]

Answer:

I didn't understand that all please tell me in Russia

4 0
3 years ago
Other questions:
  • Electrical power is transmitted from power plants to consumers–sometimes over very long distances– through conducting power line
    10·1 answer
  • Friction occurs when the and of two surfaces stick to each other
    14·2 answers
  • Which variable is not required to calculate the gibbs free-energy change?
    7·1 answer
  • 30. The slope of a velocity-time graph will give
    13·1 answer
  • Find the energy in Joules required to lift a 55.0 Megagram object a distance of 500 cm.
    11·1 answer
  • Which part of the wave has the highest frequency?
    13·2 answers
  • The newest CREE led has a life expectancy of mu = 50000 hours and its life probability density function is given by: f(t) = [e^(
    14·1 answer
  • 5. The measurement of the amount of friction a surface will generate is called the ___
    14·1 answer
  • Canned vegetables are usually more expensive than fresh vegetables true or false
    8·1 answer
  • Suppose you find yourself in a spaceship in a uniform circular orbit around a star. Suppose also that that star is going to lose
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!