1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
9

Water flows into a horizontal, cylindrical pipe at 1.4 m/s. the pipe then narrows until its diameter is halved. what is the pres

sure difference between the wide and narrow ends of the pipe?

Physics
2 answers:
inna [77]3 years ago
3 0

According to the Bernoulli's equation,the pressure difference between the wide and narrow ends of the pipe is given by

\Delta P= \frac{1}{2} \rho ( v^2_{2} - v^2_{1} )

Here,  v_{1} is the velocity of water through wide ends of cylindrical pipe and v_{2} is the velocity of water through narrow ends of cylindrical pipe.

Given, v_{1} =1.4 m/s

Now from equation continuity,

v_{1} A_{1} = v_{2} A_{2}.

Here, A_{1} and A_{2} are cross- sectional areas of wide and narrow ends of cylindrical pipe.

As pipe is circular, so

v_{1} \pi r^2_{1} = v_{2} \pi r^2_{2}.

At the second point, the diameter is halved, which means the radius is also halved. Therefore,

v_{1} r^2_{1} = v_{2}(\frac{1}{2} r_{1})^2 \\\\ v_{2} = 4 v_{1}

v_{2} = 4 \times 1.4 = 5.6 m/s

Substituting these values  with the density of water is 1000 \ kg/m^3 in pressure difference formula we get.

\Delta P= \frac{1}{2} \rho ( v^2_{2} - v^2_{1} )=\frac{1}{2}\times 1000 kg/m^3(5.6^2-1.4^2)\\\\ \Delta P = 14700\ Pa

Aliun [14]3 years ago
3 0

The pressure difference between the wide and the narrow ends of the pipe is  \boxed{14700\,{\text{Pa}}} .

Further Explanation:

According to the equation of continuity, the amount of water entering at one end of the cylindrical pipe is always equal to the amount of water coming out from the other end of the pipe.

{A_1}{v_1}={A_2}{v_2}

Here, {A_1}\,\&\,{A_2}  are the areas of cross-section of the two ends and {v_1}\,\&\,{v_2}  are the velocities of the flow at the two ends.

The area of the cross section of the pipe at the starting end is.

{A_1}=\pi{r^2}

Since the diameter of the pipe is reduced to half at the other end then its radius will also become half. Therefore, the area of cross section of the pipe will be reduced by a factor of 4.

\begin{aligned}{A_2}&=\pi{\left({\frac{r}{2}}\right)^2}\\&=\frac{{\pi{r^2}}}{4}\\&=\frac{{{A_1}}}{4}\\\end{aligned}

The speed of the water flow at the entering point is 1.4\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

Substitute the values in equation (1).

\begin{aligned}{A_1} \times 1.4&=\frac{{{A_1}}}{4}\times{v_2}\\{v_2}&=5.6\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{aligned}

Now according to the Bernoulli’s equation, the change in pressure between the two ends of the cylindrical pipe is given as:

\Delta P=\frac{1}{2}\rho\left({v_2^2 - v_1^2}\right)

The density of the water is 1000\,{{{\text{kg}}}\mathord{\left/{\vphantom{{{\text{kg}}}{{{\text{m}}^{\text{3}}}}}}\right.\kern-\nulldelimiterspace} {{{\text{m}}^{\text{3}}}}} .

Substitute the values in above expression:

\begin{aligned}\Delta P&=\frac{1}{2}\times1000\times\left({{{5.6}^2}-{{1.4}^2}} \right)\\&=500\times29.4\,{\text{Pa}}\\&{\text{ = 14700}}\,{\text{Pa}}\\\end{aligned}

Thus, the pressure difference between the wide and the narrow ends of the pipe is \boxed{14700\,{\text{Pa}}} .

Learn More:

1. A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill <u>brainly.com/question/9805263 </u>

2. For flowing water what is the magnitude of the velocity gradient <u>brainly.com/question/5181841 </u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Fluid Mechanics

Keywords:

Water flows, horizontal cylindrical pipe, diameter is halved, pressure difference, wide and narrow ends, equation of continuity, Bernoulli’s equation, A1v1=A2v2.

You might be interested in
A moon orbits an isolated planet in deep space. Which of the following forces that the planet exerts on the moon can be consider
kvv77 [185]

Answer:

A The electric force

Explanation:

3 0
3 years ago
Read 2 more answers
a car travelling at 50m/h on a horizontal highway (a) if the coefficient of static friction between road and tyres on a rainy da
aleksandrvk [35]
Hope this helps!

-Lilly

3 0
3 years ago
macmillan learning im Hamm at big bend Coty Conege A 1.30-m-long rope is stretched between two points with a tension that makes
san4es73 [151]

Answer:

0.87 m

70.6 Hz

Explanation:

L = length of the rope = 1.30 m

n = order of the harmonic = 3

\lambda = Wavelength

Wavelength is given as

\lambda = \frac{2L}{n}

\lambda = \frac{2(1.30)}{3}

\lambda = 0.87 m

v = Speed of transverse wave = 61.4 m/s

f = frequency of the third harmonic

frequency is given as

f = \frac{v}{\lambda }

f = \frac{61.4}{0.87}

f = 70.6 Hz

5 0
3 years ago
For for each situation say how the ideas of force pressure and area can be applied :
fomenos
<h3 /><h3><u><em>Solution-:</em></u></h3><h3><u><em>more force as expansion is much</em></u></h3>

<u><em>also, less force area is much</em></u>

<h3> mark me Brainliest</h3>
4 0
2 years ago
a ball is dopped and falls with an accelerationof 9.8 m/s downward it hits the ground with a velocity of 49 m/s downward how lon
juin [17]

In order to know how long it has been falling for you take the final velocity "49m/s" and divide it by the acceleration "9.8m/s" and get 5, since you have been using seconds in the calculations the answer is 5 seconds. (Fun fact, it is actually 9.82m/s per second since it accelerates and they rounded it down.)

3 0
3 years ago
Other questions:
  • 1. Compare and contrast heat and temperature.
    5·1 answer
  • What is the question
    6·1 answer
  • 3. Two charged boxes are 4 meters apart from each other. The blue box has a charge of +0.000337
    7·1 answer
  • Light traveling in water (n = 1.33) into an unknown medium.If rhe angles if incidence and refraction are 40 degrees and 25 degre
    10·1 answer
  • 20 POINTS AND BRAINLYEST
    11·1 answer
  • Which statement illustrates how engineering has influenced society?
    14·1 answer
  • A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
    8·1 answer
  • What is the magnification of an object that is 4.15 m in front of a camera that has an image position of 5.0 cm? I need to show
    11·1 answer
  • Read the paragraph, and then answer the question.
    5·2 answers
  • How long will it take a sample of Polonium- 194 to decay to 1/16 of its original amount the half -life of 0.7 seconds
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!