1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
9

Water flows into a horizontal, cylindrical pipe at 1.4 m/s. the pipe then narrows until its diameter is halved. what is the pres

sure difference between the wide and narrow ends of the pipe?

Physics
2 answers:
inna [77]3 years ago
3 0

According to the Bernoulli's equation,the pressure difference between the wide and narrow ends of the pipe is given by

\Delta P= \frac{1}{2} \rho ( v^2_{2} - v^2_{1} )

Here,  v_{1} is the velocity of water through wide ends of cylindrical pipe and v_{2} is the velocity of water through narrow ends of cylindrical pipe.

Given, v_{1} =1.4 m/s

Now from equation continuity,

v_{1} A_{1} = v_{2} A_{2}.

Here, A_{1} and A_{2} are cross- sectional areas of wide and narrow ends of cylindrical pipe.

As pipe is circular, so

v_{1} \pi r^2_{1} = v_{2} \pi r^2_{2}.

At the second point, the diameter is halved, which means the radius is also halved. Therefore,

v_{1} r^2_{1} = v_{2}(\frac{1}{2} r_{1})^2 \\\\ v_{2} = 4 v_{1}

v_{2} = 4 \times 1.4 = 5.6 m/s

Substituting these values  with the density of water is 1000 \ kg/m^3 in pressure difference formula we get.

\Delta P= \frac{1}{2} \rho ( v^2_{2} - v^2_{1} )=\frac{1}{2}\times 1000 kg/m^3(5.6^2-1.4^2)\\\\ \Delta P = 14700\ Pa

Aliun [14]3 years ago
3 0

The pressure difference between the wide and the narrow ends of the pipe is  \boxed{14700\,{\text{Pa}}} .

Further Explanation:

According to the equation of continuity, the amount of water entering at one end of the cylindrical pipe is always equal to the amount of water coming out from the other end of the pipe.

{A_1}{v_1}={A_2}{v_2}

Here, {A_1}\,\&\,{A_2}  are the areas of cross-section of the two ends and {v_1}\,\&\,{v_2}  are the velocities of the flow at the two ends.

The area of the cross section of the pipe at the starting end is.

{A_1}=\pi{r^2}

Since the diameter of the pipe is reduced to half at the other end then its radius will also become half. Therefore, the area of cross section of the pipe will be reduced by a factor of 4.

\begin{aligned}{A_2}&=\pi{\left({\frac{r}{2}}\right)^2}\\&=\frac{{\pi{r^2}}}{4}\\&=\frac{{{A_1}}}{4}\\\end{aligned}

The speed of the water flow at the entering point is 1.4\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

Substitute the values in equation (1).

\begin{aligned}{A_1} \times 1.4&=\frac{{{A_1}}}{4}\times{v_2}\\{v_2}&=5.6\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{aligned}

Now according to the Bernoulli’s equation, the change in pressure between the two ends of the cylindrical pipe is given as:

\Delta P=\frac{1}{2}\rho\left({v_2^2 - v_1^2}\right)

The density of the water is 1000\,{{{\text{kg}}}\mathord{\left/{\vphantom{{{\text{kg}}}{{{\text{m}}^{\text{3}}}}}}\right.\kern-\nulldelimiterspace} {{{\text{m}}^{\text{3}}}}} .

Substitute the values in above expression:

\begin{aligned}\Delta P&=\frac{1}{2}\times1000\times\left({{{5.6}^2}-{{1.4}^2}} \right)\\&=500\times29.4\,{\text{Pa}}\\&{\text{ = 14700}}\,{\text{Pa}}\\\end{aligned}

Thus, the pressure difference between the wide and the narrow ends of the pipe is \boxed{14700\,{\text{Pa}}} .

Learn More:

1. A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill <u>brainly.com/question/9805263 </u>

2. For flowing water what is the magnitude of the velocity gradient <u>brainly.com/question/5181841 </u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Fluid Mechanics

Keywords:

Water flows, horizontal cylindrical pipe, diameter is halved, pressure difference, wide and narrow ends, equation of continuity, Bernoulli’s equation, A1v1=A2v2.

You might be interested in
The speed of light in a vacuum is 3 x 108 miles/hour. true/false?
GarryVolchara [31]
I'm guessing they rounded because it is technically 2.998 X 108 miles/hour

so I would go with true!
8 0
4 years ago
Read 2 more answers
How can an object overcome static friction?
larisa86 [58]

Answer:

Applying enough force in one direction to move the object, making kinetic energy.

Explanation:

Simpleness

4 0
3 years ago
2.Cars were previously manufactured to be as sturdy as possible, whereas today's cars
Marina CMI [18]

Answer:

Crumple zones are designed to absorb and redistribute the force of a collision. ... Also known as a crush zone, crumple zones are areas of a vehicle that are designed to deform and crumple in a collision. This absorbs some of the energy of the impact, preventing it from being transmitted to the occupants.

4 0
3 years ago
For years, the tallest tower in the United States was the Phoenix Shot Tower in Baltimore, Maryland. The shot tower was used fro
serious [3.7K]

Answer:

The answer to your question is:

a) t = 3.81 s

b) vf =  37.4 m/s

Explanation:

Data

height = 71.3 m = 234 feet

t = 0 m/s

vf = ?

vo = 0 m/s

Formula

h = vot + 1/2gt²

vf = vo + gt

Process

a)

               h = vot + 1/2gt²

             71.3 = 0t + 1/2(9.81)t²

             2(71.3) = 9,81t²

              t² = 2(71.3)/9.81

              t² = 14.53

              t = 3.81 s

b)

      vf = 0 + (9.81)(3.81)

      vf = 37.4 m/s

3 0
3 years ago
A ball is thrown upward with a speed of 40 m/s. Approximately how much time does it take the ball to travel from the release loc
zvonat [6]

I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s².  The solutions would be completely different if the same scenario were to play out in other places.

A ball is thrown upward with a speed of 40 m/s.  Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.

So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.

Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip.  After another 4.08 seconds, the ball has returned to the height of the hand which flung it.  In total, the ball is in the air for <em>8.16 seconds</em> up and down.

4 0
3 years ago
Other questions:
  • QUICK
    14·1 answer
  • When light passes from a more-dense to a less-dense medium—from glass to air, for example—the angle of refraction predicted by S
    14·1 answer
  • A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a lar
    11·1 answer
  • There are two ways that an object can get in motion. What are they?You may use the following sentence frame:An object can get in
    8·2 answers
  • What does the w mean in w=fxd
    8·2 answers
  • A steam flows from high elevation to low elevation very quickly, has steep canyon walls, and rapidly moving water. What type of
    14·1 answer
  • 44. Belly-flop Bernie dives from atop a tall flagpole into a swimming pool below. His potential energy at the top is 10,000 J (r
    10·1 answer
  • Explain the relationship between the distance between the string and your elbow and the effort required to lift the mass.
    11·2 answers
  • Mass = 10Kg<br> velocity = 5m/s<br> what is the kinetic energy = ? Joules
    13·2 answers
  • If a runner exerts 457 j of work to make 321 w of power then how long did it take the runner to do the work
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!