The acceleration should 5.4 m/s^2
As per the question, the velocity of the airplane [v] = 660 miles per hour.
The total time taken by airplane [t] = 3.5 hours.
We are asked to determine the total distance travelled by the airplane during that period.
The distance covered [ S] by a body is the product of velocity with the time.
Mathematically distance covered = velocity × total time
S = v × t
= 660 miles/hour ×3.5 hours
= 2310 miles.
Hence, the total distance travelled by the airplane in 3.5 hour is 2310 miles.
Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
Answer:
I'm Pretty sure the answer your looking for is C