Answer:
The question clearly describes the circular motion.
The circular motion equation is

The path of the particle is circular.
Explanation:
In circular motion, the radial acceleration is always towards the center and constant in magnitude. Furthermore, the velocity of the circular motion is always tangential to the circle, that is it is always perpendicular to the radius, hence the acceleration.
Hi there! :)

Use the following kinematic equation to solve for the final velocity:

In this instance, the runner started from rest, so the initial velocity is 0 m/s. We can rewrite the equation as:

Plug in the given acceleration and time:

Heat used by electric heater :
Q = m • c • ∆T
Q = (75 kg)(4200 J/kg°C)(43°C - 15°C)
Q = 8.82 × 10⁶ J
Cost of electrical energy :
Cost = (8.82 × 10⁶ J)/(3.6 × 10⁶ J) • ($ 0.15)
Cost = $ 0.3675
Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3.
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
P = P_a* ( 1 - βh/T_a)^(g / R*β)
(g / R*β) = 32.174 / 1716*0.0035 = 5.252
P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
P = 1240 lb/ft^2
- The air density method which is expressed as:
P = P_a - γ*h
P = 2116.2 - 0.07647*14,110
P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
P = P_a* e^ ( -g*h / R*T_a )
P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
P = 1270 lb/ft^2
Answer:
emotions
Explanation:
emotions are how you feel and can happen any time
Hope it helps <333