Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
It would have 11 valance electrons.
Example/Explanation:
Say we are talking about groups 10. Group 10 would have 10 valance electrons because of the atom's electronic arrangement in the periodic table.
Explanation:
9/4 Be +2 (the 9 and 4 are stacked next to Be). Atomic #: 4
Mass #: 9, # protons: 4, # neutrons: 5, #electrons: 2.
31/15 P (31 is stacked over 15 next to the P). Atomic #: 15,
Mass #: 31, # protons: 15, # neutrons: 16, # electrons: 15.
Quantitative measurements are numerical values, they involve amounts and units like measuring things. Qualitative observations appeal to the five senses, like what does the interaction look and sound like