Answer:
C.)organs are a group of two or more different types of tissues that work together to perform a specific function
Explanation:
Cells of similar function are grouped together into tissues. For example, cardiac muscle tissue is present only in the heart, and made up of specialised cells called cardiomyocytes, or cardiac muscle cells. These cells contract to pump blood around the body.
The heart is an organ, consisting of multiple types of tissue including cardiac muscle tissue, connective tissue, blood vessels and epithelial tissue. Therefore, organs represent a group of at least two types of tissue that work together to carry out functions in the body.
A matter in the solid phase has a fixed shape and volume.
Answer:
C. Its oxidation number increases.
Explanation:
- <em><u>Oxidation is defined as the loss of electrons by an atom while reduction is the gain of electrons by an atom</u></em>.
- Atoms of elements have an oxidation number of Zero in their elemental state.
- When an atom looses electrons it undergoes oxidation and its oxidation number increases.
- For example, <em><u>an atom of sodium (Na) at its elemental state has an oxidation number of 0. When the sodium atom looses an electrons it becomes a cation, Na+, with an oxidation number of +1 , the loss of electron shows an increase in oxidation number from 0 to +1.</u></em>
The correct answer is option d, that is, the solubility of a solid is highly dependent on temperature.
Solubility refers to the maximum amount of a component, which will get dissolved in a given concentration of solvent at a particular temperature. The temperature influences the solubility of both gases and solids. The temperature has a direct influence on solubility.
For most of the ionic solids, enhancing the temperature elevates how briskly the solution can be formed. With the increase in temperature, the movement of the solid particles takes place briskly that enhances the chances that they will associate with the majority of the solvent particles. This leads to enhancing the rate at which the solution takes place.