Answer:
36111 kg
Explanation:
Given
Force = 65000N
Acceleration = 1.8m/s²
Required
Determine the mass of the elevator
This question will be answered using the following Force formula.
Force = Mass * Acceleration
Substitute values for Force and Acceleration
65000N = Mass * 1.8m/s²
Make Mass the subject
Mass = 65000N/1.8m/s²
Mass = 36111.11 kg
From the list of given options, option E answers the question.
Answer:
<h2><em>
34.46m</em></h2>
Explanation:
Using one of the equation of motion to solve the question. According to the equation v² =u²+2as where;
v is the final velocity of the bicyclist = 26m/s
u is the initial velocity of the bicyclist = 0m/s
a is the acceleration due to gravity = 9.81m/s
s is the distance covered during travel
Substitute the given parameters into the formula above to get the distance traveled
26² = 0² + 2(9.81)s
676 = 19.62s
Divide both sides by 19.62
676/19.62 = 19.62s/19.62
s = 34.46m
<em>The distance traveled by the bicyclist during the race is 34.46m</em>
PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance