Answer:
Very hot during the day and very cold at night.
Explanation:
Due to the thin atmosphere, they have very hot climate during the day time and very cold climate at night. This happens because they contain very low amounts of greenhouse gases. These gases retain the heat at night. The atmosphere also prevents excessive light and UV rays from entering. The thin atmosphere leads to many asteroids and comets hitting the surface of the planet. On earth, these asteroids usually, burn up in the mesosphere layer of the atmosphere. These asteroid collisions cause massive fires. This in turn, causes the temperature to increase during the day. During the night time, massive fires cannot burn due to the low temperature because of the lack of greenhouse gases.
The answer is D. The temperature obviously doesnt rise slower or faster, and if you are heating an object, it would make no sense to say that less heat is being transferred.
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
Answer:
They are both correct.
Explanation:
The density of an object is defined as the ratio of its mass to its volume. This implies that the density of the object is both proportional to the mass and also to the volume of the object. John only mentioned mass which is correct. Linda mentioned the second variable on which density depends which is the volume of the object.
Hence considering the both statements objectively, one can say that they are both correct.