Answer:
a) a = 1,865 m / s² and b) t = 8.1 s
Explanation:
a) Let's use Newton's second law to find acceleration, we can work the equation in scalar form because displacement and force have the same direction
F = m .a
a = F / m
a = 8.02 10² /4.3 10²
a = 1,865 m / s²
b) We use kinematic relationships in one dimension
vf = vo + at
vf = 0 + a t
t = vf / a
t = 15.1 / 1.865
t = 8.1 s
Answer:
<em>Aim at the base of the fire and use short bursts until the fire is out.</em>
<em></em>
Explanation:
Fire extinguishers use CO2 (Carbondioxide) as the extinguishing agent. This is because CO2 is denser than air, and does not support combustion.
Aiming at the base of the fire causes the CO2 to fall on the base of the fire, where the source of the fire is, trapping it, and preventing it from further reacting with air in a combustion reaction. Also, the short burst creates a strong wind that forces the flame to blow out.
A. There is less current flowing through the bulb.
Ohms law dictates that Electrical voltage = current x resistance. To understand current you would divide voltage by resistance. The less voltage the less current will run through the circuit.
Mark as brainliest if satisfied.
I think the correct answer from the choices listed above is option B. A parallel circuit differ from a series circuit in a sense that a <span>series circuit has one path for electrons, but a parallel circuit has more than one path. In a parallel circuit there two or more paths for current to flow while a series circuit only has one.</span>