Answer:
y=4
Step-by-step explanation:
its asking which one you can answer without any more context, in this case its y=4 because all the other ones evolving x lead to a rabbit hole and will take you in circles.
Check the forward differences of the sequence.
If
, then let
be the sequence of first-order differences of
. That is, for n ≥ 1,

so that
.
Let
be the sequence of differences of
,

and we see that this is a constant sequence,
. In other words,
is an arithmetic sequence with common difference between terms of 2. That is,

and we can solve for
in terms of
:



and so on down to

We solve for
in the same way.

Then



and so on down to


X^2 -61 =20
X^2= 81x =9 x=-9
Hey There!!
The answer to this is: A quadrilateral has vertices A(3, 5), B(2, 0), C(7, 0), and D(8, 5). Which statement about the quadrilateral is true?" Line BC is parallel to line AD because their slopes is equal i.e. (0 - 0) / (7 - 2) = (5 - 5) / (8 - 3) which gives 0 / 5 = 0 / 5 giving that 0 = 0. We check whether line AB is parallel to line CD. Slope of line AB is given by (0 - 5) / (2 - 3) = -5 / -1 = 5. Slope of line CD is given by (5 - 0) / (8 - 7) = 5 / 1 = 5 We have been able to prove that the opposite sides of the quadrilateral are parallel which means that the quadrilateral is not a trapezoid. Next we check whether the length of the sides are equal. Length of line AB is given by sqrt[(0 - 5)^2 + (2 - 3)^2] = sqrt[(-5)^2 + (-1)^2] = sqrt(25 + 1) = sqrt(26) Length of line BC is given by sqrt[(0 - 0)^2 + (7 - 2)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Length of line CD is given by sqrt[(5 - 0)^2 + (8 - 7)^2] = sqrt[5^2 + 1^2] = sqrt(25 + 1) = sqrt(26) Length of line DA is given by sqrt[(5 - 5)^2 + (8 - 3)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Thus, the length of the sides of the quadrilateral are not equal but opposite sides are equal which means that the quadrilateral is not a rhombus. Finally, we check whether adjacent lines are perpendicular. Recall the for perpendicular lines, the product of their slopes is equal to -1. Slope of line AB = 5 while slope of line BC = 0. The product of their slopes = 5 x 0 = 0 which is not -1, thus the adjacent sides of the quadrilateral are not perpendicular which means that the quadrilateral is not a rectangle. Therefore, ABCD is a parallelogram with non-perpendicular adjacent sides. Thus, For (option A).
Hope It Helped!~ ♡
ItsNobody~ ☆